#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Linq;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using System.Collections.Generic;
using HeuristicLab.Common;
namespace HeuristicLab.Problems.DataAnalysis.Operators {
[Item("DynOpEqHistogramInitializer", "Dynamic Operator Equalization Histogram Initializer.")]
[StorableClass]
public class DynOpEqHistogramInitializer : SingleSuccessorOperator {
public ILookupParameter> BinCapacityParameter {
get { return (ILookupParameter>)Parameters["BinCapacity"]; }
}
public ILookupParameter>> AcceptedBinQualitiesParameter {
get { return (ILookupParameter>>)Parameters["AcceptedBinQualities"]; }
}
public ILookupParameter PopulationSizeParameter {
get { return (ILookupParameter)Parameters["PopulationSize"]; }
}
public IScopeTreeLookupParameter SymbolicExpressionTreeParameter {
get { return (IScopeTreeLookupParameter)Parameters["SymbolicExpressionTree"]; }
}
public IScopeTreeLookupParameter QualityParameter {
get { return (IScopeTreeLookupParameter)Parameters["Quality"]; }
}
public ILookupParameter BinSizeParameter {
get { return (ILookupParameter)Parameters["BinSize"]; }
}
public ILookupParameter> AcceptedCountsParameter {
get { return (ILookupParameter>)Parameters["AcceptedCounts"]; }
}
public ILookupParameter> TotalCountsParameter {
get { return (ILookupParameter>)Parameters["TotalCounts"]; }
}
public ILookupParameter MaximizationParameter {
get { return (ILookupParameter)Parameters["Maximization"]; }
}
[StorableConstructor]
protected DynOpEqHistogramInitializer(bool deserializing) : base(deserializing) { }
protected DynOpEqHistogramInitializer(DynOpEqHistogramInitializer original, Cloner cloner)
: base(original, cloner) {
}
public DynOpEqHistogramInitializer()
: base() {
Parameters.Add(new ScopeTreeLookupParameter("SymbolicExpressionTree"));
Parameters.Add(new ScopeTreeLookupParameter("Quality"));
Parameters.Add(new LookupParameter("PopulationSize"));
Parameters.Add(new ValueLookupParameter("BinSize", new IntValue(5)));
Parameters.Add(new LookupParameter>("BinCapacity"));
Parameters.Add(new LookupParameter>>("AcceptedBinQualities"));
Parameters.Add(new LookupParameter>("AcceptedCounts"));
Parameters.Add(new LookupParameter>("TotalCounts"));
Parameters.Add(new LookupParameter("Maximization"));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new DynOpEqHistogramInitializer(this, cloner);
}
public override IOperation Apply() {
if (BinCapacityParameter.ActualValue == null) {
InitDefaultCapacityHistogram();
} else {
ItemList> acceptedBinQualities = AcceptedBinQualitiesParameter.ActualValue;
ItemList acceptedCounts = AcceptedCountsParameter.ActualValue;
ItemList totalCounts = TotalCountsParameter.ActualValue;
int popSize = PopulationSizeParameter.ActualValue.Value;
ScaleBinQualities(acceptedBinQualities, 0, 1, MaximizationParameter.ActualValue.Value);
double avgQualitySum = (from binAccepted in acceptedBinQualities
where binAccepted.Count > 0
select (from quality in binAccepted
select quality.Value).Average())
.Sum();
ItemList binCapacity = BinCapacityParameter.ActualValue;
int totalCapacity = 0;
for (int i = 0; i < binCapacity.Count; i++) {
double avgBinQuality = (from quality in acceptedBinQualities[i]
select quality.Value)
.DefaultIfEmpty(0.0)
.Average();
binCapacity[i].Value = Math.Max(1, (int)Math.Round(popSize * (avgBinQuality / avgQualitySum)));
// rounding can lead to loss of capacity
// this is problematic if the bin capacities are strict
totalCapacity += binCapacity[i].Value;
acceptedBinQualities[i].Clear();
acceptedCounts[i].Value = 0;
}
// distribute the remaining slots starting with the largest bins
IEnumerator orderedBinCapacities = binCapacity.OrderBy(x => -x.Value).GetEnumerator();
while (totalCapacity < popSize & orderedBinCapacities.MoveNext()) {
orderedBinCapacities.Current.Value = orderedBinCapacities.Current.Value + 1;
totalCapacity++;
}
if (totalCapacity < popSize) throw new InvalidProgramException("The sum of bin capacities doesn't match the population size");
for (int i = 0; i < totalCounts.Count; i++)
totalCounts[i].Value = 0;
}
return base.Apply();
}
public static void ScaleBinQualities(ItemList> acceptedBinQualities, double min, double max, bool maximization) {
double minValue = (from bin in acceptedBinQualities
from value in bin
select value.Value).Min();
double maxValue = (from bin in acceptedBinQualities
from value in bin
select value.Value).Max();
if (!maximization) {
double tmp = minValue;
minValue = maxValue;
maxValue = tmp;
}
double valuesRange = maxValue - minValue;
double targetRange = max - min;
foreach (var bin in acceptedBinQualities) {
foreach (var value in bin) {
double unitScaledValue = (value.Value - minValue) / valuesRange;
double targetScaledValue = unitScaledValue * targetRange + min;
value.Value = targetScaledValue;
}
}
}
private void InitDefaultCapacityHistogram() {
ItemArray trees = SymbolicExpressionTreeParameter.ActualValue;
ItemArray quality = QualityParameter.ActualValue;
var binCapacities = new ItemList();
var acceptedQuality = new ItemList>(20);
var acceptedCounts = new ItemList();
var totalCounts = new ItemList();
BinCapacityParameter.ActualValue = binCapacities;
AcceptedBinQualitiesParameter.ActualValue = acceptedQuality;
TotalCountsParameter.ActualValue = totalCounts;
AcceptedCountsParameter.ActualValue = acceptedCounts;
for (int i = 0; i < trees.Length; i++) {
int binIndex = GetBinIndexForSize(trees[i].Size);
if (Exists(binIndex)) {
AddToBin(binIndex, quality[i].Value);
} else {
CreateNewBin(binIndex);
}
}
}
private void CreateNewBin(int binIndex) {
ItemList binCapacities = BinCapacityParameter.ActualValue;
ItemList> acceptedQualities = AcceptedBinQualitiesParameter.ActualValue;
ItemList acceptedCounts = AcceptedCountsParameter.ActualValue;
ItemList totalCounts = TotalCountsParameter.ActualValue;
for (int i = binCapacities.Count; i <= binIndex; i++) {
binCapacities.Add(new IntValue(1));
acceptedQualities.Add(new ItemList(10));
acceptedCounts.Add(new IntValue(0));
totalCounts.Add(new IntValue(0));
}
}
private void AddToBin(int binIndex, double quality) {
ItemList binCapacity = BinCapacityParameter.ActualValue;
binCapacity[binIndex].Value = binCapacity[binIndex].Value + 1;
}
private bool Exists(int binIndex) {
// if the bin has a capacity set then it exists
ItemList binCapacities = BinCapacityParameter.ActualValue;
return binIndex < binCapacities.Count;
}
private int GetBinIndexForSize(int size) {
int binSize = ((IntValue)BinSizeParameter.ActualValue).Value;
return (int)Math.Floor((size - 3.0) / binSize);
}
}
}