#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using System.Windows.Forms; using alglib; using HeuristicLab.Common; using HeuristicLab.Data; using HeuristicLab.MainForm; using HeuristicLab.MainForm.WindowsForms; using HeuristicLab.Optimization; using System; using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic; using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols; using HeuristicLab.Problems.DataAnalysis.Evaluators; namespace HeuristicLab.Problems.DataAnalysis.Views { [Content(typeof(RunCollection), false)] [View("RunCollection Winkler Variable Impact View")] public partial class RunCollectionWinklerVariableImpactView : AsynchronousContentView { private const string validationBestModelResultName = "Best solution (on validation set)"; public RunCollectionWinklerVariableImpactView() { InitializeComponent(); } public new RunCollection Content { get { return (RunCollection)base.Content; } set { base.Content = value; } } protected override void RegisterContentEvents() { base.RegisterContentEvents(); this.Content.ItemsAdded += new HeuristicLab.Collections.CollectionItemsChangedEventHandler(Content_ItemsAdded); this.Content.ItemsRemoved += new HeuristicLab.Collections.CollectionItemsChangedEventHandler(Content_ItemsRemoved); this.Content.CollectionReset += new HeuristicLab.Collections.CollectionItemsChangedEventHandler(Content_CollectionReset); } protected override void DeregisterContentEvents() { base.RegisterContentEvents(); this.Content.ItemsAdded -= new HeuristicLab.Collections.CollectionItemsChangedEventHandler(Content_ItemsAdded); this.Content.ItemsRemoved -= new HeuristicLab.Collections.CollectionItemsChangedEventHandler(Content_ItemsRemoved); this.Content.CollectionReset -= new HeuristicLab.Collections.CollectionItemsChangedEventHandler(Content_CollectionReset); } protected override void OnContentChanged() { base.OnContentChanged(); this.UpdateData(); } private void Content_ItemsAdded(object sender, HeuristicLab.Collections.CollectionItemsChangedEventArgs e) { this.UpdateData(); } private void Content_ItemsRemoved(object sender, HeuristicLab.Collections.CollectionItemsChangedEventArgs e) { this.UpdateData(); } private void Content_CollectionReset(object sender, HeuristicLab.Collections.CollectionItemsChangedEventArgs e) { this.UpdateData(); } private void UpdateData() { matrixView.Content = CalculateVariableImpactMatrix(); } private DoubleMatrix CalculateVariableImpactMatrix() { DoubleMatrix matrix = null; if (Content != null) { List runsWithSolutions = (from run in Content where run.Results.ContainsKey(validationBestModelResultName) select run) .ToList(); IEnumerable allSolutions = (from run in Content where run.Results.ContainsKey(validationBestModelResultName) select run.Results[validationBestModelResultName]).Cast(); Dictionary> variableReferences = new Dictionary>(); foreach (var solution in allSolutions) { variableReferences[solution] = GetVariableReferences(solution).Distinct(); } List variableNames = (from modelVarRefs in variableReferences.Values from variableName in modelVarRefs select variableName) .Distinct() .ToList(); List statictics = new List { "Median Impact", "Mean Impact", "StdDev", "pValue" }; List columnNames = (from run in runsWithSolutions select run.Name).ToList(); columnNames.AddRange(statictics); matrix = new DoubleMatrix(variableNames.Count, columnNames.Count); matrix.SortableView = true; matrix.RowNames = variableNames; matrix.ColumnNames = columnNames; int columnIndex = 0; foreach (SymbolicRegressionSolution solution in variableReferences.Keys) { foreach (string variableName in variableReferences[solution]) { int rowIndex = variableNames.IndexOf(variableName); if (rowIndex > -1) { matrix[rowIndex, columnIndex] = CalculateMeanImpact(variableName, solution); } } columnIndex++; } List> variableImpactValues = (from row in Enumerable.Range(0, variableNames.Count()) select GetRowValues(matrix, row).ToList()) .ToList(); List referenceValues = (from variableImpacts in variableImpactValues orderby variableImpacts.Average() select variableImpacts) .First(); for (int row = 0; row < variableNames.Count; row++) { List rowValues = variableImpactValues[row]; matrix[row, columnIndex] = rowValues.Median(); matrix[row, columnIndex + 1] = rowValues.Average(); matrix[row, columnIndex + 2] = rowValues.StandardDeviation(); double bothTails, leftTail, rightTail; bothTails = leftTail = rightTail = 0.0; double[] z = new double[rowValues.Count()]; for (int i = 0; i < z.Length; i++) { z[i] = rowValues[i] - referenceValues[i]; } alglib.wsr.wilcoxonsignedranktest(z, z.Length, 0.0, ref bothTails, ref leftTail, ref rightTail); matrix[row, columnIndex + 3] = bothTails; } } return matrix; } private IEnumerable GetRowValues(DoubleMatrix matrix, int row) { return from col in Enumerable.Range(0, matrix.Columns) select matrix[row, col]; } private IEnumerable GetVariableReferences(SymbolicRegressionSolution solution) { return from node in solution.Model.SymbolicExpressionTree.IterateNodesPostfix().OfType() select node.VariableName; } private double CalculateMeanImpact(string variableName, SymbolicRegressionSolution solution) { int variableIndex = solution.ProblemData.Dataset.GetVariableIndex(variableName); double meanVal = solution.ProblemData.Dataset.GetVariableValues(variableName).Average(); List originalOutput = new List(solution.EstimatedValues); int rows = solution.ProblemData.Dataset.Rows; int columns = solution.ProblemData.Dataset.Columns; double[,] manipulatedData = new double[rows, columns]; for (int row = 0; row < rows; row++) { for (int column = 0; column < columns; column++) { if (column != variableIndex) { manipulatedData[row, column] = solution.ProblemData.Dataset[row, column]; } else { manipulatedData[row, column] = meanVal; } } } Dataset originalDataset = solution.ProblemData.Dataset; Dataset manipulatedDataset = new Dataset(solution.ProblemData.Dataset.VariableNames, manipulatedData); solution.ProblemData.Dataset = manipulatedDataset; List newOuput = new List(solution.EstimatedValues); solution.ProblemData.Dataset = originalDataset; return SimpleMSEEvaluator.Calculate(originalOutput, newOuput); } } }