#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using HeuristicLab.Data;
using HeuristicLab.MainForm;
using HeuristicLab.MainForm.WindowsForms;
using HeuristicLab.Problems.DataAnalysis.Evaluators;
namespace HeuristicLab.Problems.DataAnalysis.Views {
[Content(typeof(DataAnalysisSolution), false)]
[View("Results View")]
public partial class ResultsView : AsynchronousContentView {
private List rowNames = new List() { "Mean squared error", "Pearson's R²", "Average relative error" };
private List columnNames = new List() { "Training", "Test" };
public ResultsView() {
InitializeComponent();
}
public new DataAnalysisSolution Content {
get { return (DataAnalysisSolution)base.Content; }
set { base.Content = value; }
}
protected override void RegisterContentEvents() {
base.RegisterContentEvents();
Content.ModelChanged += new EventHandler(Content_ModelChanged);
Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
Content.EstimatedValuesChanged += new EventHandler(Content_EstimatedValuesChanged);
}
protected override void DeregisterContentEvents() {
base.DeregisterContentEvents();
Content.ModelChanged -= new EventHandler(Content_ModelChanged);
Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
Content.EstimatedValuesChanged -= new EventHandler(Content_EstimatedValuesChanged);
}
private void Content_ModelChanged(object sender, EventArgs e) {
UpdateView();
}
private void Content_ProblemDataChanged(object sender, EventArgs e) {
UpdateView();
}
private void Content_EstimatedValuesChanged(object sender, EventArgs e) {
UpdateView();
}
protected override void OnContentChanged() {
base.OnContentChanged();
UpdateView();
}
private void UpdateView() {
if (Content != null) {
DoubleMatrix matrix = new DoubleMatrix(rowNames.Count, columnNames.Count);
matrix.RowNames = rowNames;
matrix.ColumnNames = columnNames;
matrix.SortableView = false;
IEnumerable originalTrainingValues = Content.ProblemData.Dataset.GetEnumeratedVariableValues(Content.ProblemData.TargetVariable.Value, Content.ProblemData.TrainingIndizes);
IEnumerable originalTestValues = Content.ProblemData.Dataset.GetEnumeratedVariableValues(Content.ProblemData.TargetVariable.Value, Content.ProblemData.TestIndizes);
matrix[0, 0] = SimpleMSEEvaluator.Calculate(originalTrainingValues, Content.EstimatedTrainingValues);
matrix[0, 1] = SimpleMSEEvaluator.Calculate(originalTestValues, Content.EstimatedTestValues);
matrix[1, 0] = SimpleRSquaredEvaluator.Calculate(originalTrainingValues, Content.EstimatedTrainingValues);
matrix[1, 1] = SimpleRSquaredEvaluator.Calculate(originalTestValues, Content.EstimatedTestValues);
matrix[2, 0] = SimpleMeanAbsolutePercentageErrorEvaluator.Calculate(originalTrainingValues, Content.EstimatedTrainingValues);
matrix[2, 1] = SimpleMeanAbsolutePercentageErrorEvaluator.Calculate(originalTestValues, Content.EstimatedTestValues);
matrixView.Content = matrix;
} else
matrixView.Content = null;
}
}
}