#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols; namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic { /// /// Represents a solution for a symbolic regression problem which can be visualized in the GUI. /// [Item("SymbolicRegressionSolution", "Represents a solution for a symbolic regression problem which can be visualized in the GUI.")] [StorableClass] public sealed class SymbolicRegressionSolution : DataAnalysisSolution { public SymbolicRegressionSolution() : base() { } // for cloning [StorableConstructor] public SymbolicRegressionSolution(bool deserializing) : base(deserializing) { } public SymbolicRegressionSolution(DataAnalysisProblemData problemData, SymbolicRegressionModel model, double lowerEstimationLimit, double upperEstimationLimit) : base(problemData, lowerEstimationLimit, upperEstimationLimit) { this.Model = model; } public override Image ItemImage { get { return HeuristicLab.Common.Resources.VS2008ImageLibrary.Function; } } public new SymbolicRegressionModel Model { get { return (SymbolicRegressionModel)base.Model; } set { base.Model = value; } } protected override void RecalculateEstimatedValues() { int minLag = 0; var laggedTreeNodes = Model.SymbolicExpressionTree.IterateNodesPrefix().OfType(); if (laggedTreeNodes.Any()) minLag = laggedTreeNodes.Min(node => node.Lag); IEnumerable calculatedValues = from x in Model.GetEstimatedValues(ProblemData, 0 - minLag, ProblemData.Dataset.Rows) let boundedX = Math.Min(UpperEstimationLimit, Math.Max(LowerEstimationLimit, x)) select double.IsNaN(boundedX) ? UpperEstimationLimit : boundedX; estimatedValues = Enumerable.Repeat(double.NaN, Math.Abs(minLag)).Concat(calculatedValues).ToList(); OnEstimatedValuesChanged(); } private List estimatedValues; public override IEnumerable EstimatedValues { get { if (estimatedValues == null) RecalculateEstimatedValues(); return estimatedValues.AsEnumerable(); } } public override IEnumerable EstimatedTrainingValues { get { if (estimatedValues == null) RecalculateEstimatedValues(); int start = ProblemData.TrainingSamplesStart.Value; int n = ProblemData.TrainingSamplesEnd.Value - start; return estimatedValues.Skip(start).Take(n).ToList(); } } public override IEnumerable EstimatedTestValues { get { if (estimatedValues == null) RecalculateEstimatedValues(); int start = ProblemData.TestSamplesStart.Value; int n = ProblemData.TestSamplesEnd.Value - start; return estimatedValues.Skip(start).Take(n).ToList(); } } } }