#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
///
/// Represents a solution for a symbolic regression problem which can be visualized in the GUI.
///
[Item("SymbolicRegressionSolution", "Represents a solution for a symbolic regression problem which can be visualized in the GUI.")]
[StorableClass]
public sealed class SymbolicRegressionSolution : DataAnalysisSolution {
public SymbolicRegressionSolution() : base() { } // for cloning
[StorableConstructor]
public SymbolicRegressionSolution(bool deserializing) : base(deserializing) { }
public SymbolicRegressionSolution(DataAnalysisProblemData problemData, SymbolicRegressionModel model, double lowerEstimationLimit, double upperEstimationLimit)
: base(problemData, lowerEstimationLimit, upperEstimationLimit) {
this.Model = model;
}
public override Image ItemImage {
get { return HeuristicLab.Common.Resources.VS2008ImageLibrary.Function; }
}
public new SymbolicRegressionModel Model {
get { return (SymbolicRegressionModel)base.Model; }
set { base.Model = value; }
}
protected override void RecalculateEstimatedValues() {
int minLag = 0;
var laggedTreeNodes = Model.SymbolicExpressionTree.IterateNodesPrefix().OfType();
if (laggedTreeNodes.Any())
minLag = laggedTreeNodes.Min(node => node.Lag);
IEnumerable calculatedValues =
from x in Model.GetEstimatedValues(ProblemData, 0 - minLag, ProblemData.Dataset.Rows)
let boundedX = Math.Min(UpperEstimationLimit, Math.Max(LowerEstimationLimit, x))
select double.IsNaN(boundedX) ? UpperEstimationLimit : boundedX;
estimatedValues = Enumerable.Repeat(double.NaN, Math.Abs(minLag)).Concat(calculatedValues).ToList();
OnEstimatedValuesChanged();
}
private List estimatedValues;
public override IEnumerable EstimatedValues {
get {
if (estimatedValues == null) RecalculateEstimatedValues();
return estimatedValues.AsEnumerable();
}
}
public override IEnumerable EstimatedTrainingValues {
get {
if (estimatedValues == null) RecalculateEstimatedValues();
int start = ProblemData.TrainingSamplesStart.Value;
int n = ProblemData.TrainingSamplesEnd.Value - start;
return estimatedValues.Skip(start).Take(n).ToList();
}
}
public override IEnumerable EstimatedTestValues {
get {
if (estimatedValues == null) RecalculateEstimatedValues();
int start = ProblemData.TestSamplesStart.Value;
int n = ProblemData.TestSamplesEnd.Value - start;
return estimatedValues.Skip(start).Take(n).ToList();
}
}
}
}