#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
///
/// A base class for operators that analyze the validation fitness of symbolic regression models.
///
[Item("SymbolicRegressionValidationAnalyzer", "A base class for operators that analyze the validation fitness of symbolic regression models.")]
[StorableClass]
public abstract class SymbolicRegressionValidationAnalyzer : SingleSuccessorOperator {
private const string RandomParameterName = "Random";
private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
private const string ProblemDataParameterName = "ProblemData";
private const string ValidationSamplesStartParameterName = "SamplesStart";
private const string ValidationSamplesEndParameterName = "SamplesEnd";
private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
private const string EvaluatorParameterName = "Evaluator";
private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
#region parameter properties
public ILookupParameter RandomParameter {
get { return (ILookupParameter)Parameters[RandomParameterName]; }
}
public ScopeTreeLookupParameter SymbolicExpressionTreeParameter {
get { return (ScopeTreeLookupParameter)Parameters[SymbolicExpressionTreeParameterName]; }
}
public IValueLookupParameter SymbolicExpressionTreeInterpreterParameter {
get { return (IValueLookupParameter)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
}
public ILookupParameter EvaluatorParameter {
get { return (ILookupParameter)Parameters[EvaluatorParameterName]; }
}
public IValueLookupParameter ProblemDataParameter {
get { return (IValueLookupParameter)Parameters[ProblemDataParameterName]; }
}
public IValueLookupParameter ValidationSamplesStartParameter {
get { return (IValueLookupParameter)Parameters[ValidationSamplesStartParameterName]; }
}
public IValueLookupParameter ValidationSamplesEndParameter {
get { return (IValueLookupParameter)Parameters[ValidationSamplesEndParameterName]; }
}
public IValueParameter RelativeNumberOfEvaluatedSamplesParameter {
get { return (IValueParameter)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
}
public IValueLookupParameter UpperEstimationLimitParameter {
get { return (IValueLookupParameter)Parameters[UpperEstimationLimitParameterName]; }
}
public IValueLookupParameter LowerEstimationLimitParameter {
get { return (IValueLookupParameter)Parameters[LowerEstimationLimitParameterName]; }
}
#endregion
#region properties
public IRandom Random {
get { return RandomParameter.ActualValue; }
}
public ItemArray SymbolicExpressionTree {
get { return SymbolicExpressionTreeParameter.ActualValue; }
}
public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
}
public ISymbolicRegressionEvaluator Evaluator {
get { return EvaluatorParameter.ActualValue; }
}
public DataAnalysisProblemData ProblemData {
get { return ProblemDataParameter.ActualValue; }
}
public IntValue ValidiationSamplesStart {
get { return ValidationSamplesStartParameter.ActualValue; }
}
public IntValue ValidationSamplesEnd {
get { return ValidationSamplesEndParameter.ActualValue; }
}
public PercentValue RelativeNumberOfEvaluatedSamples {
get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
}
public DoubleValue UpperEstimationLimit {
get { return UpperEstimationLimitParameter.ActualValue; }
}
public DoubleValue LowerEstimationLimit {
get { return LowerEstimationLimitParameter.ActualValue; }
}
#endregion
[StorableConstructor]
protected SymbolicRegressionValidationAnalyzer(bool deserializing) : base(deserializing) { }
protected SymbolicRegressionValidationAnalyzer(SymbolicRegressionValidationAnalyzer original, Cloner cloner) : base(original, cloner) { }
public SymbolicRegressionValidationAnalyzer()
: base() {
Parameters.Add(new LookupParameter(RandomParameterName, "The random generator to use."));
Parameters.Add(new LookupParameter(EvaluatorParameterName, "The evaluator which should be used to evaluate the solution on the validation set."));
Parameters.Add(new ScopeTreeLookupParameter(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
Parameters.Add(new ValueLookupParameter(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
Parameters.Add(new ValueLookupParameter(ProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
Parameters.Add(new ValueLookupParameter(ValidationSamplesStartParameterName, "The first index of the validation partition of the data set."));
Parameters.Add(new ValueLookupParameter(ValidationSamplesEndParameterName, "The last index of the validation partition of the data set."));
Parameters.Add(new ValueParameter(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.", new PercentValue(1)));
Parameters.Add(new ValueLookupParameter(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
Parameters.Add(new ValueLookupParameter(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() { }
public override IOperation Apply() {
var trees = SymbolicExpressionTree.ToArray();
string targetVariable = ProblemData.TargetVariable.Value;
// select a random subset of rows in the validation set
int validationStart = ValidiationSamplesStart.Value;
int validationEnd = ValidationSamplesEnd.Value;
int seed = Random.Next();
int count = (int)((validationEnd - validationStart) * RelativeNumberOfEvaluatedSamples.Value);
if (count == 0) count = 1;
IEnumerable rows = RandomEnumerable.SampleRandomNumbers(seed, validationStart, validationEnd, count)
.Where(row => row < ProblemData.TestSamplesStart.Value || ProblemData.TestSamplesEnd.Value <= row);
double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
double[] validationQuality = new double[trees.Count()];
for (int i = 0; i < validationQuality.Length; i++) {
validationQuality[i] = Evaluator.Evaluate(SymbolicExpressionTreeInterpreter, trees[i],
lowerEstimationLimit, upperEstimationLimit,
ProblemData.Dataset, targetVariable,
rows);
}
Analyze(trees, validationQuality);
return base.Apply();
}
protected abstract void Analyze(SymbolicExpressionTree[] trees, double[] validationQuality);
}
}