1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Analysis;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
34 | using System;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
37 | /// <summary>
|
---|
38 | /// An operator that analyzes the validation best scaled symbolic regression solution.
|
---|
39 | /// </summary>
|
---|
40 | [Item("FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer", "An operator that analyzes the validation best scaled symbolic regression solution.")]
|
---|
41 | [StorableClass]
|
---|
42 | public sealed class FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer : SingleSuccessorOperator, ISymbolicRegressionAnalyzer {
|
---|
43 | private const string RandomParameterName = "Random";
|
---|
44 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
45 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
46 | private const string ProblemDataParameterName = "ProblemData";
|
---|
47 | private const string ValidationSamplesStartParameterName = "SamplesStart";
|
---|
48 | private const string ValidationSamplesEndParameterName = "SamplesEnd";
|
---|
49 | // private const string QualityParameterName = "Quality";
|
---|
50 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
51 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
52 | private const string EvaluatorParameterName = "Evaluator";
|
---|
53 | private const string MaximizationParameterName = "Maximization";
|
---|
54 | private const string BestSolutionParameterName = "Best solution (validation)";
|
---|
55 | private const string BestSolutionQualityParameterName = "Best solution quality (validation)";
|
---|
56 | private const string CurrentBestValidationQualityParameterName = "Current best validation quality";
|
---|
57 | private const string BestSolutionQualityValuesParameterName = "Validation Quality";
|
---|
58 | private const string ResultsParameterName = "Results";
|
---|
59 | private const string VariableFrequenciesParameterName = "VariableFrequencies";
|
---|
60 | private const string BestKnownQualityParameterName = "BestKnownQuality";
|
---|
61 | private const string GenerationsParameterName = "Generations";
|
---|
62 | private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
|
---|
63 |
|
---|
64 | private const string TrainingMeanSquaredErrorQualityParameterName = "Mean squared error (training)";
|
---|
65 | private const string MinTrainingMeanSquaredErrorQualityParameterName = "Min mean squared error (training)";
|
---|
66 | private const string MaxTrainingMeanSquaredErrorQualityParameterName = "Max mean squared error (training)";
|
---|
67 | private const string AverageTrainingMeanSquaredErrorQualityParameterName = "Average mean squared error (training)";
|
---|
68 | private const string BestTrainingMeanSquaredErrorQualityParameterName = "Best mean squared error (training)";
|
---|
69 |
|
---|
70 | private const string TrainingAverageRelativeErrorQualityParameterName = "Average relative error (training)";
|
---|
71 | private const string MinTrainingAverageRelativeErrorQualityParameterName = "Min average relative error (training)";
|
---|
72 | private const string MaxTrainingAverageRelativeErrorQualityParameterName = "Max average relative error (training)";
|
---|
73 | private const string AverageTrainingAverageRelativeErrorQualityParameterName = "Average average relative error (training)";
|
---|
74 | private const string BestTrainingAverageRelativeErrorQualityParameterName = "Best average relative error (training)";
|
---|
75 |
|
---|
76 | private const string TrainingRSquaredQualityParameterName = "R² (training)";
|
---|
77 | private const string MinTrainingRSquaredQualityParameterName = "Min R² (training)";
|
---|
78 | private const string MaxTrainingRSquaredQualityParameterName = "Max R² (training)";
|
---|
79 | private const string AverageTrainingRSquaredQualityParameterName = "Average R² (training)";
|
---|
80 | private const string BestTrainingRSquaredQualityParameterName = "Best R² (training)";
|
---|
81 |
|
---|
82 | private const string TestMeanSquaredErrorQualityParameterName = "Mean squared error (test)";
|
---|
83 | private const string MinTestMeanSquaredErrorQualityParameterName = "Min mean squared error (test)";
|
---|
84 | private const string MaxTestMeanSquaredErrorQualityParameterName = "Max mean squared error (test)";
|
---|
85 | private const string AverageTestMeanSquaredErrorQualityParameterName = "Average mean squared error (test)";
|
---|
86 | private const string BestTestMeanSquaredErrorQualityParameterName = "Best mean squared error (test)";
|
---|
87 |
|
---|
88 | private const string TestAverageRelativeErrorQualityParameterName = "Average relative error (test)";
|
---|
89 | private const string MinTestAverageRelativeErrorQualityParameterName = "Min average relative error (test)";
|
---|
90 | private const string MaxTestAverageRelativeErrorQualityParameterName = "Max average relative error (test)";
|
---|
91 | private const string AverageTestAverageRelativeErrorQualityParameterName = "Average average relative error (test)";
|
---|
92 | private const string BestTestAverageRelativeErrorQualityParameterName = "Best average relative error (test)";
|
---|
93 |
|
---|
94 | private const string TestRSquaredQualityParameterName = "R² (test)";
|
---|
95 | private const string MinTestRSquaredQualityParameterName = "Min R² (test)";
|
---|
96 | private const string MaxTestRSquaredQualityParameterName = "Max R² (test)";
|
---|
97 | private const string AverageTestRSquaredQualityParameterName = "Average R² (test)";
|
---|
98 | private const string BestTestRSquaredQualityParameterName = "Best R² (test)";
|
---|
99 |
|
---|
100 | private const string RSquaredValuesParameterName = "R²";
|
---|
101 | private const string MeanSquaredErrorValuesParameterName = "Mean squared error";
|
---|
102 | private const string RelativeErrorValuesParameterName = "Average relative error";
|
---|
103 |
|
---|
104 | #region parameter properties
|
---|
105 | public ILookupParameter<IRandom> RandomParameter {
|
---|
106 | get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
107 | }
|
---|
108 | public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
109 | get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
110 | }
|
---|
111 | public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
112 | get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
113 | }
|
---|
114 | public ILookupParameter<ISymbolicRegressionEvaluator> EvaluatorParameter {
|
---|
115 | get { return (ILookupParameter<ISymbolicRegressionEvaluator>)Parameters[EvaluatorParameterName]; }
|
---|
116 | }
|
---|
117 | public ILookupParameter<BoolValue> MaximizationParameter {
|
---|
118 | get { return (ILookupParameter<BoolValue>)Parameters[MaximizationParameterName]; }
|
---|
119 | }
|
---|
120 | public IValueLookupParameter<DataAnalysisProblemData> ProblemDataParameter {
|
---|
121 | get { return (IValueLookupParameter<DataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
122 | }
|
---|
123 | public IValueLookupParameter<IntValue> ValidationSamplesStartParameter {
|
---|
124 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesStartParameterName]; }
|
---|
125 | }
|
---|
126 | public IValueLookupParameter<IntValue> ValidationSamplesEndParameter {
|
---|
127 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesEndParameterName]; }
|
---|
128 | }
|
---|
129 | public IValueParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
|
---|
130 | get { return (IValueParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
|
---|
131 | }
|
---|
132 |
|
---|
133 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
134 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
135 | }
|
---|
136 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
137 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
138 | }
|
---|
139 | public ILookupParameter<SymbolicRegressionSolution> BestSolutionParameter {
|
---|
140 | get { return (ILookupParameter<SymbolicRegressionSolution>)Parameters[BestSolutionParameterName]; }
|
---|
141 | }
|
---|
142 | public ILookupParameter<SymbolicRegressionSolution> BestTrainingSolutionParameter {
|
---|
143 | get { return (ILookupParameter<SymbolicRegressionSolution>)Parameters["BestTrainingSolution"]; }
|
---|
144 | }
|
---|
145 | public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
146 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
147 | }
|
---|
148 | public ScopeTreeLookupParameter<DoubleValue> ValidationQualityParameter {
|
---|
149 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["ValidationQuality"]; }
|
---|
150 | }
|
---|
151 |
|
---|
152 | public ILookupParameter<IntValue> GenerationsParameter {
|
---|
153 | get { return (ILookupParameter<IntValue>)Parameters[GenerationsParameterName]; }
|
---|
154 | }
|
---|
155 | public ILookupParameter<DoubleValue> BestSolutionQualityParameter {
|
---|
156 | get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionQualityParameterName]; }
|
---|
157 | }
|
---|
158 | public ILookupParameter<DataTable> BestSolutionQualityValuesParameter {
|
---|
159 | get { return (ILookupParameter<DataTable>)Parameters[BestSolutionQualityValuesParameterName]; }
|
---|
160 | }
|
---|
161 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
162 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
163 | }
|
---|
164 | public ILookupParameter<DoubleValue> BestKnownQualityParameter {
|
---|
165 | get { return (ILookupParameter<DoubleValue>)Parameters[BestKnownQualityParameterName]; }
|
---|
166 | }
|
---|
167 | public ILookupParameter<DoubleValue> CurrentBestValidationQualityParameter {
|
---|
168 | get { return (ILookupParameter<DoubleValue>)Parameters[CurrentBestValidationQualityParameterName]; }
|
---|
169 | }
|
---|
170 |
|
---|
171 | public ILookupParameter<DataTable> VariableFrequenciesParameter {
|
---|
172 | get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
|
---|
173 | }
|
---|
174 |
|
---|
175 | #endregion
|
---|
176 | #region properties
|
---|
177 | public IRandom Random {
|
---|
178 | get { return RandomParameter.ActualValue; }
|
---|
179 | }
|
---|
180 | public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
|
---|
181 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
182 | }
|
---|
183 | public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
|
---|
184 | get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
|
---|
185 | }
|
---|
186 | public ISymbolicRegressionEvaluator Evaluator {
|
---|
187 | get { return EvaluatorParameter.ActualValue; }
|
---|
188 | }
|
---|
189 | public BoolValue Maximization {
|
---|
190 | get { return MaximizationParameter.ActualValue; }
|
---|
191 | }
|
---|
192 | public DataAnalysisProblemData ProblemData {
|
---|
193 | get { return ProblemDataParameter.ActualValue; }
|
---|
194 | }
|
---|
195 | public IntValue ValidationSamplesStart {
|
---|
196 | get { return ValidationSamplesStartParameter.ActualValue; }
|
---|
197 | }
|
---|
198 | public IntValue ValidationSamplesEnd {
|
---|
199 | get { return ValidationSamplesEndParameter.ActualValue; }
|
---|
200 | }
|
---|
201 | public PercentValue RelativeNumberOfEvaluatedSamples {
|
---|
202 | get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
|
---|
203 | }
|
---|
204 |
|
---|
205 | public DoubleValue UpperEstimationLimit {
|
---|
206 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
207 | }
|
---|
208 | public DoubleValue LowerEstimationLimit {
|
---|
209 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
210 | }
|
---|
211 | public ResultCollection Results {
|
---|
212 | get { return ResultsParameter.ActualValue; }
|
---|
213 | }
|
---|
214 | public DataTable VariableFrequencies {
|
---|
215 | get { return VariableFrequenciesParameter.ActualValue; }
|
---|
216 | }
|
---|
217 | public IntValue Generations {
|
---|
218 | get { return GenerationsParameter.ActualValue; }
|
---|
219 | }
|
---|
220 | public DoubleValue BestSolutionQuality {
|
---|
221 | get { return BestSolutionQualityParameter.ActualValue; }
|
---|
222 | }
|
---|
223 |
|
---|
224 | #endregion
|
---|
225 |
|
---|
226 | public FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer()
|
---|
227 | : base() {
|
---|
228 | Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "The random generator to use."));
|
---|
229 | Parameters.Add(new LookupParameter<ISymbolicRegressionEvaluator>(EvaluatorParameterName, "The evaluator which should be used to evaluate the solution on the validation set."));
|
---|
230 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
231 | Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
|
---|
232 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
|
---|
233 | Parameters.Add(new ValueLookupParameter<DataAnalysisProblemData>(ProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
|
---|
234 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesStartParameterName, "The first index of the validation partition of the data set."));
|
---|
235 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesEndParameterName, "The last index of the validation partition of the data set."));
|
---|
236 | Parameters.Add(new ValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.", new PercentValue(1)));
|
---|
237 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
238 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
239 | Parameters.Add(new LookupParameter<SymbolicRegressionSolution>(BestSolutionParameterName, "The best symbolic regression solution."));
|
---|
240 | Parameters.Add(new LookupParameter<SymbolicRegressionSolution>("BestTrainingSolution"));
|
---|
241 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality"));
|
---|
242 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("ValidationQuality"));
|
---|
243 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName, "The number of generations calculated so far."));
|
---|
244 | Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionQualityParameterName, "The quality of the best symbolic regression solution."));
|
---|
245 | Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection where the best symbolic regression solution should be stored."));
|
---|
246 | Parameters.Add(new LookupParameter<DoubleValue>(BestKnownQualityParameterName, "The best known (validation) quality achieved on the data set."));
|
---|
247 | Parameters.Add(new LookupParameter<DoubleValue>(CurrentBestValidationQualityParameterName, "The quality of the best solution (on the validation set) of the current generation."));
|
---|
248 | Parameters.Add(new LookupParameter<DataTable>(BestSolutionQualityValuesParameterName));
|
---|
249 | Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
|
---|
250 | }
|
---|
251 |
|
---|
252 | [StorableConstructor]
|
---|
253 | private FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
254 |
|
---|
255 | [StorableHook(HookType.AfterDeserialization)]
|
---|
256 | private void AfterDeserialization() {
|
---|
257 | #region compatibility remove before releasing 3.3.1
|
---|
258 | if (!Parameters.ContainsKey(EvaluatorParameterName)) {
|
---|
259 | Parameters.Add(new LookupParameter<ISymbolicRegressionEvaluator>(EvaluatorParameterName, "The evaluator which should be used to evaluate the solution on the validation set."));
|
---|
260 | }
|
---|
261 | if (!Parameters.ContainsKey(MaximizationParameterName)) {
|
---|
262 | Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
|
---|
263 | }
|
---|
264 | if (!Parameters.ContainsKey(BestSolutionQualityValuesParameterName)) {
|
---|
265 | Parameters.Add(new LookupParameter<DataTable>(BestSolutionQualityValuesParameterName));
|
---|
266 | }
|
---|
267 | if (!Parameters.ContainsKey("BestTrainingSolution")) {
|
---|
268 | Parameters.Add(new LookupParameter<SymbolicRegressionSolution>("BestTrainingSolution"));
|
---|
269 | }
|
---|
270 | if (!Parameters.ContainsKey("Quality")) {
|
---|
271 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality"));
|
---|
272 | }
|
---|
273 | if (!Parameters.ContainsKey("ValidationQuality")) {
|
---|
274 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("ValidationQuality"));
|
---|
275 | }
|
---|
276 | #endregion
|
---|
277 | }
|
---|
278 |
|
---|
279 | public override IOperation Apply() {
|
---|
280 | ItemArray<SymbolicExpressionTree> trees = SymbolicExpressionTree;
|
---|
281 | ItemArray<DoubleValue> qualities = QualityParameter.ActualValue;
|
---|
282 |
|
---|
283 | string targetVariable = ProblemData.TargetVariable.Value;
|
---|
284 |
|
---|
285 | // select a random subset of rows in the validation set
|
---|
286 | int validationStart = ValidationSamplesStart.Value;
|
---|
287 | int validationEnd = ValidationSamplesEnd.Value;
|
---|
288 | int seed = Random.Next();
|
---|
289 | int count = (int)((validationEnd - validationStart) * RelativeNumberOfEvaluatedSamples.Value);
|
---|
290 | if (count == 0) count = 1;
|
---|
291 | IEnumerable<int> rows = RandomEnumerable.SampleRandomNumbers(seed, validationStart, validationEnd, count);
|
---|
292 |
|
---|
293 | double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
294 | double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
295 |
|
---|
296 | double bestQuality = Maximization.Value ? double.NegativeInfinity : double.PositiveInfinity;
|
---|
297 | SymbolicExpressionTree bestTree = null;
|
---|
298 | SymbolicExpressionTree bestTrainingTree = trees[0];
|
---|
299 | double bestTrainingQuality = qualities[0].Value;
|
---|
300 | ItemArray<DoubleValue> validationQualites = new ItemArray<DoubleValue>(qualities.Length);
|
---|
301 | for (int i = 0; i < trees.Length; i++) {
|
---|
302 | SymbolicExpressionTree tree = trees[i];
|
---|
303 | double quality = Evaluator.Evaluate(SymbolicExpressionTreeInterpreter, tree,
|
---|
304 | lowerEstimationLimit, upperEstimationLimit,
|
---|
305 | ProblemData.Dataset, targetVariable,
|
---|
306 | rows);
|
---|
307 | validationQualites[i] = new DoubleValue(quality);
|
---|
308 | if ((Maximization.Value && quality > bestQuality) ||
|
---|
309 | (!Maximization.Value && quality < bestQuality)) {
|
---|
310 | bestQuality = quality;
|
---|
311 | bestTree = tree;
|
---|
312 | }
|
---|
313 | if ((Maximization.Value && qualities[i].Value > bestTrainingQuality) ||
|
---|
314 | (!Maximization.Value && qualities[i].Value < bestTrainingQuality)) {
|
---|
315 | bestTrainingQuality = qualities[i].Value;
|
---|
316 | bestTrainingTree = tree;
|
---|
317 | }
|
---|
318 | }
|
---|
319 | ValidationQualityParameter.ActualValue = validationQualites;
|
---|
320 |
|
---|
321 | var scaledBestTrainingTree = GetScaledTree(bestTrainingTree);
|
---|
322 |
|
---|
323 | SymbolicRegressionSolution bestTrainingSolution = new SymbolicRegressionSolution((DataAnalysisProblemData)ProblemData.Clone(),
|
---|
324 | new SymbolicRegressionModel((ISymbolicExpressionTreeInterpreter)SymbolicExpressionTreeInterpreter.Clone(), scaledBestTrainingTree),
|
---|
325 | lowerEstimationLimit, upperEstimationLimit);
|
---|
326 | bestTrainingSolution.Name = "Best solution (training)";
|
---|
327 | bestTrainingSolution.Description = "The solution of the population with the highest fitness";
|
---|
328 |
|
---|
329 | // if the best validation tree is better than the current best solution => update
|
---|
330 | bool newBest =
|
---|
331 | BestSolutionQuality == null ||
|
---|
332 | (Maximization.Value && bestQuality > BestSolutionQuality.Value) ||
|
---|
333 | (!Maximization.Value && bestQuality < BestSolutionQuality.Value);
|
---|
334 | if (newBest) {
|
---|
335 | var scaledTree = GetScaledTree(bestTree);
|
---|
336 | var model = new SymbolicRegressionModel((ISymbolicExpressionTreeInterpreter)SymbolicExpressionTreeInterpreter.Clone(),
|
---|
337 | scaledTree);
|
---|
338 | var solution = new SymbolicRegressionSolution((DataAnalysisProblemData)ProblemData.Clone(), model, lowerEstimationLimit, upperEstimationLimit);
|
---|
339 | solution.Name = BestSolutionParameterName;
|
---|
340 | solution.Description = "Best solution on validation partition found over the whole run.";
|
---|
341 |
|
---|
342 | BestSolutionParameter.ActualValue = solution;
|
---|
343 | BestSolutionQualityParameter.ActualValue = new DoubleValue(bestQuality);
|
---|
344 |
|
---|
345 | BestSymbolicRegressionSolutionAnalyzer.UpdateBestSolutionResults(solution, ProblemData, Results, Generations, VariableFrequencies);
|
---|
346 | }
|
---|
347 |
|
---|
348 | CurrentBestValidationQualityParameter.ActualValue = new DoubleValue(bestQuality);
|
---|
349 |
|
---|
350 | if (!Results.ContainsKey(BestSolutionQualityValuesParameterName)) {
|
---|
351 | Results.Add(new Result(BestSolutionQualityValuesParameterName, new DataTable(BestSolutionQualityValuesParameterName, BestSolutionQualityValuesParameterName)));
|
---|
352 | Results.Add(new Result(BestSolutionQualityParameterName, new DoubleValue()));
|
---|
353 | Results.Add(new Result(CurrentBestValidationQualityParameterName, new DoubleValue()));
|
---|
354 | Results.Add(new Result("Best solution (training)", bestTrainingSolution));
|
---|
355 | }
|
---|
356 | Results[BestSolutionQualityParameterName].Value = new DoubleValue(BestSolutionQualityParameter.ActualValue.Value);
|
---|
357 | Results[CurrentBestValidationQualityParameterName].Value = new DoubleValue(bestQuality);
|
---|
358 | Results["Best solution (training)"].Value = bestTrainingSolution;
|
---|
359 |
|
---|
360 | DataTable validationValues = (DataTable)Results[BestSolutionQualityValuesParameterName].Value;
|
---|
361 | AddValue(validationValues, BestSolutionQualityParameter.ActualValue.Value, BestSolutionQualityParameterName, BestSolutionQualityParameterName);
|
---|
362 | AddValue(validationValues, bestQuality, CurrentBestValidationQualityParameterName, CurrentBestValidationQualityParameterName);
|
---|
363 |
|
---|
364 | BestSolutionQualityValuesParameter.ActualValue = validationValues;
|
---|
365 |
|
---|
366 | return base.Apply();
|
---|
367 | }
|
---|
368 |
|
---|
369 | private SymbolicExpressionTree GetScaledTree(SymbolicExpressionTree tree) {
|
---|
370 | // calculate scaling parameters and only for the best tree using the full training set
|
---|
371 | double alpha, beta;
|
---|
372 | int trainingStart = ProblemData.TrainingSamplesStart.Value;
|
---|
373 | int trainingEnd = ProblemData.TrainingSamplesEnd.Value;
|
---|
374 | IEnumerable<int> trainingRows = Enumerable.Range(trainingStart, trainingEnd - trainingStart);
|
---|
375 | IEnumerable<double> originalValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable.Value, trainingRows);
|
---|
376 | IEnumerable<double> estimatedValues = SymbolicExpressionTreeInterpreter.GetSymbolicExpressionTreeValues(tree, ProblemData.Dataset, trainingRows);
|
---|
377 |
|
---|
378 | SymbolicRegressionScaledMeanSquaredErrorEvaluator.CalculateScalingParameters(originalValues, estimatedValues, out beta, out alpha);
|
---|
379 |
|
---|
380 | // scale tree for solution
|
---|
381 | return SymbolicRegressionSolutionLinearScaler.Scale(tree, alpha, beta);
|
---|
382 | }
|
---|
383 |
|
---|
384 | [StorableHook(HookType.AfterDeserialization)]
|
---|
385 | private void Initialize() { }
|
---|
386 |
|
---|
387 | private static void AddValue(DataTable table, double data, string name, string description) {
|
---|
388 | DataRow row;
|
---|
389 | table.Rows.TryGetValue(name, out row);
|
---|
390 | if (row == null) {
|
---|
391 | row = new DataRow(name, description);
|
---|
392 | row.Values.Add(data);
|
---|
393 | table.Rows.Add(row);
|
---|
394 | } else {
|
---|
395 | row.Values.Add(data);
|
---|
396 | }
|
---|
397 | }
|
---|
398 | }
|
---|
399 | }
|
---|