#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;
using System.Data;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using HeuristicLab.MainForm;
using HeuristicLab.MainForm.WindowsForms;
using HeuristicLab.Data.Views;
using HeuristicLab.Data;
using HeuristicLab.Problems.DataAnalysis.Evaluators;
using HeuristicLab.Problems.DataAnalysis.VectorRegression;
namespace HeuristicLab.Problems.DataAnalysis.VectorRegression.Views {
[Content(typeof(IMultiTargetRegressionSolution), false)]
[View("Multi-target Results View")]
public partial class ResultsView : AsynchronousContentView {
private List rowNames = new List() {
"Mean squared error (training)", "Mean squared error (test)",
"Pearson's R² (training)", "Pearson's R² (test)",
"Mean relative error (training)", "Mean relative error (test)" };
public ResultsView() {
InitializeComponent();
}
public new IMultiTargetRegressionSolution Content {
get { return (IMultiTargetRegressionSolution)base.Content; }
set { base.Content = value; }
}
protected override void RegisterContentEvents() {
base.RegisterContentEvents();
//Content.ModelChanged += new EventHandler(Content_ModelChanged);
//Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
//Content.EstimatedValuesChanged += new EventHandler(Content_EstimatedValuesChanged);
}
protected override void DeregisterContentEvents() {
base.DeregisterContentEvents();
//Content.ModelChanged -= new EventHandler(Content_ModelChanged);
//Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
//Content.EstimatedValuesChanged -= new EventHandler(Content_EstimatedValuesChanged);
}
private void Content_ModelChanged(object sender, EventArgs e) {
UpdateView();
}
private void Content_ProblemDataChanged(object sender, EventArgs e) {
UpdateView();
}
private void Content_EstimatedValuesChanged(object sender, EventArgs e) {
UpdateView();
}
protected override void OnContentChanged() {
base.OnContentChanged();
UpdateView();
}
private void UpdateView() {
if (Content != null) {
DoubleMatrix matrix = new DoubleMatrix(rowNames.Count, Content.TargetVariables.Count());
matrix.RowNames = rowNames;
matrix.ColumnNames = Content.TargetVariables;
matrix.SortableView = false;
int columnIndex = 0;
foreach (string targetVariable in Content.TargetVariables) {
DataAnalysisSolution targetVariableSolution = Content.GetModelFor(targetVariable);
IEnumerable originalTrainingValues = targetVariableSolution.ProblemData.Dataset.GetVariableValues(targetVariable, targetVariableSolution.ProblemData.TrainingSamplesStart.Value, targetVariableSolution.ProblemData.TrainingSamplesEnd.Value);
IEnumerable originalTestValues = targetVariableSolution.ProblemData.Dataset.GetVariableValues(targetVariable, targetVariableSolution.ProblemData.TestSamplesStart.Value, targetVariableSolution.ProblemData.TestSamplesEnd.Value);
matrix[0, columnIndex] = SimpleMSEEvaluator.Calculate(originalTrainingValues, targetVariableSolution.EstimatedTrainingValues);
matrix[1, columnIndex] = SimpleMSEEvaluator.Calculate(originalTestValues, targetVariableSolution.EstimatedTestValues);
matrix[2, columnIndex] = SimpleRSquaredEvaluator.Calculate(originalTrainingValues, targetVariableSolution.EstimatedTrainingValues);
matrix[3, columnIndex] = SimpleRSquaredEvaluator.Calculate(originalTestValues, targetVariableSolution.EstimatedTestValues);
matrix[4, columnIndex] = SimpleMeanAbsolutePercentageErrorEvaluator.Calculate(originalTrainingValues, targetVariableSolution.EstimatedTrainingValues);
matrix[5, columnIndex] = SimpleMeanAbsolutePercentageErrorEvaluator.Calculate(originalTestValues, targetVariableSolution.EstimatedTestValues);
columnIndex++;
}
matrixView.Content = matrix;
} else
matrixView.Content = null;
}
}
}