#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using System; using System.Collections.Generic; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Random; using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols; namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Symbols { [StorableClass] public sealed class DerivativeVariableTreeNode : VariableTreeNode { public new DerivativeVariable Symbol { get { return (DerivativeVariable)base.Symbol; } } [Storable] private int lag; public int Lag { get { return lag; } set { lag = value; } } private DerivativeVariableTreeNode() { } [StorableConstructor] protected DerivativeVariableTreeNode(bool deserializing) : base(deserializing) { } protected DerivativeVariableTreeNode(DerivativeVariableTreeNode original, Cloner cloner) : base(original, cloner) { lag = original.lag; } public DerivativeVariableTreeNode(DerivativeVariable derivedVariableSymbol) : base(derivedVariableSymbol) { } public override bool HasLocalParameters { get { return true; } } public override void ResetLocalParameters(IRandom random) { base.ResetLocalParameters(random); lag = random.Next(Symbol.MinLag, Symbol.MaxLag + 1); } public override void ShakeLocalParameters(IRandom random, double shakingFactor) { base.ShakeLocalParameters(random, shakingFactor); lag = Math.Min(Symbol.MaxLag, Math.Max(Symbol.MinLag, lag + random.Next(-1, 2))); } public override IDeepCloneable Clone(Cloner cloner) { return new DerivativeVariableTreeNode(this, cloner); } public override string ToString() { return Weight.ToString("E4") + " d(" + VariableName + ")(t" + (lag > 0 ? "+" : "") + lag + ")"; } } }