#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Symbols; using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols; namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic { [StorableClass] [Item("SymbolicTimeSeriesPrognosisGrammar", "Represents a grammar for time series prognosis model using all available functions.")] public class SymbolicTimeSeriesPrognosisGrammar : DefaultSymbolicExpressionGrammar { [Storable] private int dimension; // for persistence private SymbolicTimeSeriesPrognosisGrammar() : this(1) { } public SymbolicTimeSeriesPrognosisGrammar(int dimension) : base() { this.dimension = dimension; Initialize(); } private void Initialize() { var add = new Addition(); var sub = new Subtraction(); var mul = new Multiplication(); var div = new Division(); var mean = new Average(); var sin = new Sine(); var cos = new Cosine(); var tan = new Tangent(); var log = new Logarithm(); var exp = new Exponential(); var @if = new IfThenElse(); var gt = new GreaterThan(); var lt = new LessThan(); var and = new And(); var or = new Or(); var not = new Not(); var constant = new Constant(); constant.MinValue = -20; constant.MaxValue = 20; var variableSymbol = new HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols.Variable(); var laggedVariableSymbol = new HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols.LaggedVariable(); var integralVariableSymbol = new IntegratedVariable(); var derivedVariableSymbol = new DerivativeVariable(); var movingAverageSymbol = new MovingAverage(); var allSymbols = new List() { add, sub, mul, div, mean, sin, cos, tan, log, exp, @if, gt, lt, and, or, not, constant, variableSymbol, laggedVariableSymbol, derivedVariableSymbol, integralVariableSymbol, movingAverageSymbol}; var unaryFunctionSymbols = new List() { sin, cos, tan, log, exp, not }; var binaryFunctionSymbols = new List() { gt, lt }; var functionSymbols = new List() { add, sub, mul, div, mean, and, or }; var terminalSymbols = new List() { constant, variableSymbol, laggedVariableSymbol, derivedVariableSymbol, integralVariableSymbol, movingAverageSymbol }; foreach (var symb in allSymbols) AddSymbol(symb); foreach (var funSymb in functionSymbols) { SetMinSubtreeCount(funSymb, 1); SetMaxSubtreeCount(funSymb, 3); } foreach (var funSymb in unaryFunctionSymbols) { SetMinSubtreeCount(funSymb, 1); SetMaxSubtreeCount(funSymb, 1); } foreach (var funSymb in binaryFunctionSymbols) { SetMinSubtreeCount(funSymb, 2); SetMaxSubtreeCount(funSymb, 2); } SetMinSubtreeCount(@if, 3); SetMaxSubtreeCount(@if, 3); foreach (var terminalSymbol in terminalSymbols) { SetMinSubtreeCount(terminalSymbol, 0); SetMaxSubtreeCount(terminalSymbol, 0); } SetMinSubtreeCount(StartSymbol, dimension); SetMaxSubtreeCount(StartSymbol, dimension); // allow each symbol as child of the start symbol foreach (var symb in allSymbols) { for (int i = 0; i < GetMaxSubtreeCount(StartSymbol); i++) SetAllowedChild(StartSymbol, symb, i); } // allow each symbol as child of every other symbol (except for terminals that have maxSubtreeCount == 0) foreach (var parent in allSymbols) { for (int i = 0; i < GetMaxSubtreeCount(parent); i++) foreach (var child in allSymbols) { SetAllowedChild(parent, child, i); } } } public void SetResultProducingBranches(int n) { SetMinSubtreeCount(StartSymbol, n); SetMaxSubtreeCount(StartSymbol, n); foreach (Symbol s in Symbols) { if (s != StartSymbol) for (int i = 0; i < n; i++) { SetAllowedChild(StartSymbol, s, i); } } } public override IDeepCloneable Clone(Cloner cloner) { SymbolicTimeSeriesPrognosisGrammar clone = (SymbolicTimeSeriesPrognosisGrammar)base.Clone(cloner); clone.dimension = this.dimension; return clone; } } }