#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Common;
using HeuristicLab.Core;
using System.Collections.Generic;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Compiler;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Interfaces;
using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Symbols;
namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis {
[StorableClass]
[Item("SymbolicTimeSeriesExpressionInterpreter", "Interpreter for symbolic expression trees representing time series forecast models.")]
public class SymbolicTimeSeriesExpressionInterpreter : NamedItem, ISymbolicTimeSeriesExpressionInterpreter {
private class OpCodes {
public const byte Add = 1;
public const byte Sub = 2;
public const byte Mul = 3;
public const byte Div = 4;
public const byte Sin = 5;
public const byte Cos = 6;
public const byte Tan = 7;
public const byte Log = 8;
public const byte Exp = 9;
public const byte IfThenElse = 10;
public const byte GT = 11;
public const byte LT = 12;
public const byte AND = 13;
public const byte OR = 14;
public const byte NOT = 15;
public const byte Average = 16;
public const byte Call = 17;
public const byte Variable = 18;
public const byte LagVariable = 19;
public const byte Constant = 20;
public const byte Arg = 21;
public const byte Differential = 22;
public const byte Integral = 23;
public const byte MovingAverage = 24;
}
private Dictionary symbolToOpcode = new Dictionary() {
{ typeof(Addition), OpCodes.Add },
{ typeof(Subtraction), OpCodes.Sub },
{ typeof(Multiplication), OpCodes.Mul },
{ typeof(Division), OpCodes.Div },
{ typeof(Sine), OpCodes.Sin },
{ typeof(Cosine), OpCodes.Cos },
{ typeof(Tangent), OpCodes.Tan },
{ typeof(Logarithm), OpCodes.Log },
{ typeof(Exponential), OpCodes.Exp },
{ typeof(IfThenElse), OpCodes.IfThenElse },
{ typeof(GreaterThan), OpCodes.GT },
{ typeof(LessThan), OpCodes.LT },
{ typeof(And), OpCodes.AND },
{ typeof(Or), OpCodes.OR },
{ typeof(Not), OpCodes.NOT},
{ typeof(Average), OpCodes.Average},
{ typeof(InvokeFunction), OpCodes.Call },
{ typeof(HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols.Variable), OpCodes.Variable },
{ typeof(LaggedVariable), OpCodes.LagVariable },
{ typeof(IntegratedVariable), OpCodes.Integral },
{ typeof(DerivativeVariable), OpCodes.Differential },
{ typeof(MovingAverage), OpCodes.MovingAverage },
{ typeof(Constant), OpCodes.Constant },
{ typeof(Argument), OpCodes.Arg },
};
private const int ARGUMENT_STACK_SIZE = 1024;
private Dataset dataset;
private int row;
private Instruction[] code;
private int pc;
private double[] argumentStack = new double[ARGUMENT_STACK_SIZE];
private int argStackPointer;
private Dictionary estimatedTargetVariableValues;
private int currentPredictionHorizon;
public override bool CanChangeName {
get { return false; }
}
public override bool CanChangeDescription {
get { return false; }
}
[StorableConstructor]
protected SymbolicTimeSeriesExpressionInterpreter(bool deserializing) : base(deserializing) { }
protected SymbolicTimeSeriesExpressionInterpreter(SymbolicTimeSeriesExpressionInterpreter original, Cloner cloner)
: base(original, cloner) {
}
public SymbolicTimeSeriesExpressionInterpreter()
: base() {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicTimeSeriesExpressionInterpreter(this, cloner);
}
#region ITimeSeriesExpressionInterpreter Members
public IEnumerable GetSymbolicExpressionTreeValues(SymbolicExpressionTree tree, Dataset dataset, IEnumerable targetVariables, IEnumerable rows, int predictionHorizon) {
this.dataset = dataset;
List targetVariableIndexes = new List();
estimatedTargetVariableValues = new Dictionary();
foreach (string targetVariable in targetVariables) {
int index = dataset.GetVariableIndex(targetVariable);
targetVariableIndexes.Add(index);
estimatedTargetVariableValues.Add(index, new double[predictionHorizon]);
}
var compiler = new SymbolicExpressionTreeCompiler();
compiler.AddInstructionPostProcessingHook(PostProcessInstruction);
code = compiler.Compile(tree, MapSymbolToOpCode);
foreach (var row in rows) {
// ResetVariableValues(dataset, row);
for (int step = 0; step < predictionHorizon; step++) {
this.row = row + step;
this.currentPredictionHorizon = step;
pc = 0;
argStackPointer = 0;
double[] estimatedValues = new double[tree.Root.SubTrees[0].SubTrees.Count];
int component = 0;
foreach (int targetVariableIndex in targetVariableIndexes) {
double estimatedValue = Evaluate();
estimatedTargetVariableValues[targetVariableIndex][step] = estimatedValue;
estimatedValues[component] = estimatedValue;
component++;
}
yield return estimatedValues;
}
}
}
public IEnumerable GetScaledSymbolicExpressionTreeValues(SymbolicExpressionTree tree, Dataset dataset, IEnumerable targetVariables, IEnumerable rows, int predictionHorizon, double[] beta, double[] alpha) {
this.dataset = dataset;
List targetVariableIndexes = new List();
estimatedTargetVariableValues = new Dictionary();
foreach (string targetVariable in targetVariables) {
int index = dataset.GetVariableIndex(targetVariable);
targetVariableIndexes.Add(index);
estimatedTargetVariableValues.Add(index, new double[predictionHorizon]);
}
var compiler = new SymbolicExpressionTreeCompiler();
compiler.AddInstructionPostProcessingHook(PostProcessInstruction);
code = compiler.Compile(tree, MapSymbolToOpCode);
foreach (var row in rows) {
// ResetVariableValues(dataset, row);
for (int step = 0; step < predictionHorizon; step++) {
this.row = row + step;
this.currentPredictionHorizon = step;
pc = 0;
argStackPointer = 0;
double[] estimatedValues = new double[tree.Root.SubTrees[0].SubTrees.Count];
int component = 0;
foreach (int targetVariableIndex in targetVariableIndexes) {
double estimatedValue = Evaluate() * beta[component] + alpha[component];
estimatedTargetVariableValues[targetVariableIndex][step] = estimatedValue;
estimatedValues[component] = estimatedValue;
component++;
}
yield return estimatedValues;
}
}
}
#endregion
//private void ResetVariableValues(Dataset dataset, int start) {
// foreach (var pair in estimatedTargetVariableValues) {
// int targetVariableIndex = pair.Key;
// double[] values = pair.Value;
// for (int i = 0; i < values.Length; i++) {
// values[i] = dataset[start + i, targetVariableIndex];
// }
// }
//}
private Instruction PostProcessInstruction(Instruction instr) {
if (instr.opCode == OpCodes.Variable || instr.opCode == OpCodes.LagVariable ||
instr.opCode == OpCodes.Integral || instr.opCode == OpCodes.MovingAverage || instr.opCode == OpCodes.Differential) {
var variableTreeNode = instr.dynamicNode as VariableTreeNode;
instr.iArg0 = (ushort)dataset.GetVariableIndex(variableTreeNode.VariableName);
}
return instr;
}
private byte MapSymbolToOpCode(SymbolicExpressionTreeNode treeNode) {
if (symbolToOpcode.ContainsKey(treeNode.Symbol.GetType()))
return symbolToOpcode[treeNode.Symbol.GetType()];
else
throw new NotSupportedException("Symbol: " + treeNode.Symbol);
}
private double Evaluate() {
Instruction currentInstr = code[pc++];
switch (currentInstr.opCode) {
case OpCodes.Add: {
double s = Evaluate();
for (int i = 1; i < currentInstr.nArguments; i++) {
s += Evaluate();
}
return s;
}
case OpCodes.Sub: {
double s = Evaluate();
for (int i = 1; i < currentInstr.nArguments; i++) {
s -= Evaluate();
}
if (currentInstr.nArguments == 1) s = -s;
return s;
}
case OpCodes.Mul: {
double p = Evaluate();
for (int i = 1; i < currentInstr.nArguments; i++) {
p *= Evaluate();
}
return p;
}
case OpCodes.Div: {
double p = Evaluate();
for (int i = 1; i < currentInstr.nArguments; i++) {
p /= Evaluate();
}
if (currentInstr.nArguments == 1) p = 1.0 / p;
return p;
}
case OpCodes.Average: {
double sum = Evaluate();
for (int i = 1; i < currentInstr.nArguments; i++) {
sum += Evaluate();
}
return sum / currentInstr.nArguments;
}
case OpCodes.Cos: {
return Math.Cos(Evaluate());
}
case OpCodes.Sin: {
return Math.Sin(Evaluate());
}
case OpCodes.Tan: {
return Math.Tan(Evaluate());
}
case OpCodes.Exp: {
return Math.Exp(Evaluate());
}
case OpCodes.Log: {
return Math.Log(Evaluate());
}
case OpCodes.IfThenElse: {
double condition = Evaluate();
double result;
if (condition > 0.0) {
result = Evaluate(); SkipBakedCode();
} else {
SkipBakedCode(); result = Evaluate();
}
return result;
}
case OpCodes.AND: {
double result = Evaluate();
for (int i = 1; i < currentInstr.nArguments; i++) {
if (result <= 0.0) SkipBakedCode();
else {
result = Evaluate();
}
}
return result <= 0.0 ? -1.0 : 1.0;
}
case OpCodes.OR: {
double result = Evaluate();
for (int i = 1; i < currentInstr.nArguments; i++) {
if (result > 0.0) SkipBakedCode();
else {
result = Evaluate();
}
}
return result > 0.0 ? 1.0 : -1.0;
}
case OpCodes.NOT: {
return -Evaluate();
}
case OpCodes.GT: {
double x = Evaluate();
double y = Evaluate();
if (x > y) return 1.0;
else return -1.0;
}
case OpCodes.LT: {
double x = Evaluate();
double y = Evaluate();
if (x < y) return 1.0;
else return -1.0;
}
case OpCodes.Call: {
// evaluate sub-trees
// push on argStack in reverse order
for (int i = 0; i < currentInstr.nArguments; i++) {
argumentStack[argStackPointer + currentInstr.nArguments - i] = Evaluate();
}
argStackPointer += currentInstr.nArguments;
// save the pc
int nextPc = pc;
// set pc to start of function
pc = currentInstr.iArg0;
// evaluate the function
double v = Evaluate();
// decrease the argument stack pointer by the number of arguments pushed
// to set the argStackPointer back to the original location
argStackPointer -= currentInstr.nArguments;
// restore the pc => evaluation will continue at point after my subtrees
pc = nextPc;
return v;
}
case OpCodes.Arg: {
return argumentStack[argStackPointer - currentInstr.iArg0];
}
case OpCodes.Variable: {
var variableTreeNode = currentInstr.dynamicNode as VariableTreeNode;
return dataset[row, currentInstr.iArg0] * variableTreeNode.Weight;
}
case OpCodes.LagVariable: {
var lagVariableTreeNode = currentInstr.dynamicNode as LaggedVariableTreeNode;
int actualRow = row + lagVariableTreeNode.Lag;
if (actualRow < 0 || actualRow >= dataset.Rows + currentPredictionHorizon)
return double.NaN;
return GetVariableValue(currentInstr.iArg0, lagVariableTreeNode.Lag) * lagVariableTreeNode.Weight;
}
case OpCodes.MovingAverage: {
var movingAvgTreeNode = currentInstr.dynamicNode as MovingAverageTreeNode;
if (row + movingAvgTreeNode.MinTimeOffset < 0 || row + movingAvgTreeNode.MaxTimeOffset >= dataset.Rows + currentPredictionHorizon)
return double.NaN;
double sum = 0.0;
for (int relativeRow = movingAvgTreeNode.MinTimeOffset; relativeRow < movingAvgTreeNode.MaxTimeOffset; relativeRow++) {
sum += GetVariableValue(currentInstr.iArg0, relativeRow);
}
return movingAvgTreeNode.Weight * sum / (movingAvgTreeNode.MaxTimeOffset - movingAvgTreeNode.MinTimeOffset);
}
case OpCodes.Differential: {
var diffTreeNode = currentInstr.dynamicNode as DerivativeVariableTreeNode;
if (row + diffTreeNode.Lag - 2 < 0 || row + diffTreeNode.Lag >= dataset.Rows + currentPredictionHorizon)
return double.NaN;
double y_0 = GetVariableValue(currentInstr.iArg0, diffTreeNode.Lag);
double y_1 = GetVariableValue(currentInstr.iArg0, diffTreeNode.Lag - 1);
double y_2 = GetVariableValue(currentInstr.iArg0, diffTreeNode.Lag - 2);
return diffTreeNode.Weight * (y_0 - 4 * y_1 + 3 * y_2) / 2;
}
case OpCodes.Integral: {
var integralVarTreeNode = currentInstr.dynamicNode as IntegratedVariableTreeNode;
if (row + integralVarTreeNode.MinTimeOffset < 0 || row + integralVarTreeNode.MaxTimeOffset >= dataset.Rows + currentPredictionHorizon)
return double.NaN;
double sum = 0;
for (int relativeRow = integralVarTreeNode.MinTimeOffset; relativeRow < integralVarTreeNode.MaxTimeOffset; relativeRow++) {
sum += GetVariableValue(currentInstr.iArg0, relativeRow);
}
return integralVarTreeNode.Weight * sum;
}
case OpCodes.Constant: {
var constTreeNode = currentInstr.dynamicNode as ConstantTreeNode;
return constTreeNode.Value;
}
default: throw new NotSupportedException();
}
}
private double GetVariableValue(int variableIndex, int timeoffset) {
if (currentPredictionHorizon + timeoffset >= 0) {
double[] values;
estimatedTargetVariableValues.TryGetValue(variableIndex, out values);
if (values != null) {
return values[currentPredictionHorizon + timeoffset];
}
}
if (row + timeoffset < 0 || row + timeoffset >= dataset.Rows) {
return double.NaN;
} else {
return dataset[row + timeoffset, variableIndex];
}
}
// skips a whole branch
protected void SkipBakedCode() {
int i = 1;
while (i > 0) {
i += code[pc++].nArguments;
i--;
}
}
}
}