#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
using HeuristicLab.Common;
namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression.Symbolic {
///
/// An operator that creates a linearly transformed symbolic regression solution (given alpha and beta).
///
[Item("SymbolicVectorRegressionSolutionLinearScaler", "An operator that creates a linearly transformed symbolic regression solution (given alpha and beta).")]
[StorableClass]
public sealed class SymbolicVectorRegressionSolutionLinearScaler : SingleSuccessorOperator {
private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
private const string ScaledSymbolicExpressionTreeParameterName = "ScaledSymbolicExpressionTree";
private const string AlphaParameterName = "Alpha";
private const string BetaParameterName = "Beta";
public ILookupParameter SymbolicExpressionTreeParameter {
get { return (ILookupParameter)Parameters[SymbolicExpressionTreeParameterName]; }
}
public ILookupParameter ScaledSymbolicExpressionTreeParameter {
get { return (ILookupParameter)Parameters[ScaledSymbolicExpressionTreeParameterName]; }
}
public ILookupParameter AlphaParameter {
get { return (ILookupParameter)Parameters[AlphaParameterName]; }
}
public ILookupParameter BetaParameter {
get { return (ILookupParameter)Parameters[BetaParameterName]; }
}
[StorableConstructor]
protected SymbolicVectorRegressionSolutionLinearScaler(bool deserializing) : base(deserializing) { }
protected SymbolicVectorRegressionSolutionLinearScaler(SymbolicVectorRegressionSolutionLinearScaler original, Cloner cloner)
: base(original, cloner) {
}
public SymbolicVectorRegressionSolutionLinearScaler()
: base() {
Parameters.Add(new LookupParameter(SymbolicExpressionTreeParameterName, "The symbolic expression trees to transform."));
Parameters.Add(new LookupParameter(ScaledSymbolicExpressionTreeParameterName, "The resulting symbolic expression trees after transformation."));
Parameters.Add(new LookupParameter(AlphaParameterName, "Alpha parameter for linear transformation."));
Parameters.Add(new LookupParameter(BetaParameterName, "Beta parameter for linear transformation."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicVectorRegressionSolutionLinearScaler(this, cloner);
}
public override IOperation Apply() {
SymbolicExpressionTree tree = SymbolicExpressionTreeParameter.ActualValue;
DoubleArray alpha = AlphaParameter.ActualValue;
DoubleArray beta = BetaParameter.ActualValue;
if (alpha != null && beta != null) {
ScaledSymbolicExpressionTreeParameter.ActualValue = Scale(tree, beta.ToArray(), alpha.ToArray());
} else {
// alpha or beta parameter not available => do not scale tree
ScaledSymbolicExpressionTreeParameter.ActualValue = tree;
}
return base.Apply();
}
public static SymbolicExpressionTree Scale(SymbolicExpressionTree original, double[] beta, double[] alpha) {
List resultProducingBranches = new List(original.Root.SubTrees[0].SubTrees);
// remove the main branch before cloning to prevent cloning of sub-trees
while (original.Root.SubTrees[0].SubTrees.Count > 0)
original.Root.SubTrees[0].RemoveSubTree(0);
var scaledTree = (SymbolicExpressionTree)original.Clone();
int i = 0;
foreach (var resultProducingBranch in resultProducingBranches) {
var scaledMainBranch = MakeSum(MakeProduct(beta[i], resultProducingBranch), alpha[i]);
// insert main branch into the original tree again
original.Root.SubTrees[0].AddSubTree(resultProducingBranch);
// insert the scaled main branch into the cloned tree
scaledTree.Root.SubTrees[0].AddSubTree(scaledMainBranch);
i++;
}
return scaledTree;
}
private static SymbolicExpressionTreeNode MakeSum(SymbolicExpressionTreeNode treeNode, double alpha) {
var node = (new Addition()).CreateTreeNode();
var alphaConst = MakeConstant(alpha);
node.AddSubTree(treeNode);
node.AddSubTree(alphaConst);
return node;
}
private static SymbolicExpressionTreeNode MakeProduct(double beta, SymbolicExpressionTreeNode treeNode) {
var node = (new Multiplication()).CreateTreeNode();
var betaConst = MakeConstant(beta);
node.AddSubTree(treeNode);
node.AddSubTree(betaConst);
return node;
}
private static SymbolicExpressionTreeNode MakeConstant(double c) {
var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
node.Value = c;
return node;
}
}
}