#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Operators; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols; using HeuristicLab.Common; namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression.Symbolic { /// /// An operator that creates a linearly transformed symbolic regression solution (given alpha and beta). /// [Item("SymbolicVectorRegressionSolutionLinearScaler", "An operator that creates a linearly transformed symbolic regression solution (given alpha and beta).")] [StorableClass] public sealed class SymbolicVectorRegressionSolutionLinearScaler : SingleSuccessorOperator { private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree"; private const string ScaledSymbolicExpressionTreeParameterName = "ScaledSymbolicExpressionTree"; private const string AlphaParameterName = "Alpha"; private const string BetaParameterName = "Beta"; public ILookupParameter SymbolicExpressionTreeParameter { get { return (ILookupParameter)Parameters[SymbolicExpressionTreeParameterName]; } } public ILookupParameter ScaledSymbolicExpressionTreeParameter { get { return (ILookupParameter)Parameters[ScaledSymbolicExpressionTreeParameterName]; } } public ILookupParameter AlphaParameter { get { return (ILookupParameter)Parameters[AlphaParameterName]; } } public ILookupParameter BetaParameter { get { return (ILookupParameter)Parameters[BetaParameterName]; } } [StorableConstructor] protected SymbolicVectorRegressionSolutionLinearScaler(bool deserializing) : base(deserializing) { } protected SymbolicVectorRegressionSolutionLinearScaler(SymbolicVectorRegressionSolutionLinearScaler original, Cloner cloner) : base(original, cloner) { } public SymbolicVectorRegressionSolutionLinearScaler() : base() { Parameters.Add(new LookupParameter(SymbolicExpressionTreeParameterName, "The symbolic expression trees to transform.")); Parameters.Add(new LookupParameter(ScaledSymbolicExpressionTreeParameterName, "The resulting symbolic expression trees after transformation.")); Parameters.Add(new LookupParameter(AlphaParameterName, "Alpha parameter for linear transformation.")); Parameters.Add(new LookupParameter(BetaParameterName, "Beta parameter for linear transformation.")); } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicVectorRegressionSolutionLinearScaler(this, cloner); } public override IOperation Apply() { SymbolicExpressionTree tree = SymbolicExpressionTreeParameter.ActualValue; DoubleArray alpha = AlphaParameter.ActualValue; DoubleArray beta = BetaParameter.ActualValue; if (alpha != null && beta != null) { ScaledSymbolicExpressionTreeParameter.ActualValue = Scale(tree, beta.ToArray(), alpha.ToArray()); } else { // alpha or beta parameter not available => do not scale tree ScaledSymbolicExpressionTreeParameter.ActualValue = tree; } return base.Apply(); } public static SymbolicExpressionTree Scale(SymbolicExpressionTree original, double[] beta, double[] alpha) { List resultProducingBranches = new List(original.Root.SubTrees[0].SubTrees); // remove the main branch before cloning to prevent cloning of sub-trees while (original.Root.SubTrees[0].SubTrees.Count > 0) original.Root.SubTrees[0].RemoveSubTree(0); var scaledTree = (SymbolicExpressionTree)original.Clone(); int i = 0; foreach (var resultProducingBranch in resultProducingBranches) { var scaledMainBranch = MakeSum(MakeProduct(beta[i], resultProducingBranch), alpha[i]); // insert main branch into the original tree again original.Root.SubTrees[0].AddSubTree(resultProducingBranch); // insert the scaled main branch into the cloned tree scaledTree.Root.SubTrees[0].AddSubTree(scaledMainBranch); i++; } return scaledTree; } private static SymbolicExpressionTreeNode MakeSum(SymbolicExpressionTreeNode treeNode, double alpha) { var node = (new Addition()).CreateTreeNode(); var alphaConst = MakeConstant(alpha); node.AddSubTree(treeNode); node.AddSubTree(alphaConst); return node; } private static SymbolicExpressionTreeNode MakeProduct(double beta, SymbolicExpressionTreeNode treeNode) { var node = (new Multiplication()).CreateTreeNode(); var betaConst = MakeConstant(beta); node.AddSubTree(treeNode); node.AddSubTree(betaConst); return node; } private static SymbolicExpressionTreeNode MakeConstant(double c) { var node = (ConstantTreeNode)(new Constant()).CreateTreeNode(); node.Value = c; return node; } } }