#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using System.Collections.Generic;
using System.Linq;
using System.Drawing;
using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression.Symbolic {
///
/// Represents a solution for a symbolic vector regression problem which can be visualized in the GUI.
///
[Item("SymbolicVectorRegressionSolution", "Represents a solution for a symbolic vector regression problems which can be visualized in the GUI.")]
[StorableClass]
public sealed class SymbolicVectorRegressionSolution : NamedItem, IMultiVariateDataAnalysisSolution {
[Storable]
private Dictionary regressionSolutions;
public IEnumerable TargetVariables {
get { return regressionSolutions.Keys; }
}
public SymbolicVectorRegressionSolution() : base() { }
public SymbolicVectorRegressionSolution(MultiVariateDataAnalysisProblemData problemData, SymbolicExpressionTree tree, ISymbolicExpressionTreeInterpreter interpreter)
: base() {
var selectedTargetVariables = (from targetVariable in problemData.TargetVariables
where problemData.TargetVariables.ItemChecked(targetVariable)
select targetVariable.Value).ToArray();
regressionSolutions = new Dictionary();
for (int i = 0; i < selectedTargetVariables.Length; i++) {
SymbolicExpressionTree componentTree = (SymbolicExpressionTree)tree.Clone();
List componentBranches = new List(componentTree.Root.SubTrees[0].SubTrees);
// use only the i-th vector component
while (componentTree.Root.SubTrees[0].SubTrees.Count > 0) componentTree.Root.SubTrees[0].RemoveSubTree(0);
componentTree.Root.SubTrees[0].AddSubTree(componentBranches[i]);
var componentSolution = CreateSymbolicRegressionSolution(problemData, componentTree, selectedTargetVariables[i], interpreter);
regressionSolutions.Add(selectedTargetVariables[i], componentSolution);
}
}
private static SymbolicRegressionSolution CreateSymbolicRegressionSolution(
MultiVariateDataAnalysisProblemData problemData,
SymbolicExpressionTree symbolicExpressionTree,
string targetVariable,
ISymbolicExpressionTreeInterpreter interpreter) {
return new SymbolicRegressionSolution(problemData.ConvertToDataAnalysisProblemData(targetVariable), new SymbolicRegressionModel(interpreter, symbolicExpressionTree), double.NegativeInfinity, double.PositiveInfinity);
}
public override Image ItemImage {
get { return HeuristicLab.Common.Resources.VS2008ImageLibrary.Function; }
}
public SymbolicRegressionSolution GetModelFor(string targetVariable) {
return regressionSolutions[targetVariable];
}
public override IDeepCloneable Clone(Cloner cloner) {
SymbolicVectorRegressionSolution clone = (SymbolicVectorRegressionSolution)base.Clone(cloner);
clone.regressionSolutions = new Dictionary(regressionSolutions.Count);
foreach (var pair in regressionSolutions)
clone.regressionSolutions.Add(pair.Key, (SymbolicRegressionSolution)cloner.Clone(pair.Value));
return clone;
}
}
}