1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
26 | using HeuristicLab.Optimization;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
32 |
|
---|
33 | public class GeneticInformationItem {
|
---|
34 |
|
---|
35 | private Type myAncestorDefinition;
|
---|
36 | public Type AncestorDefinition {
|
---|
37 | get { return myAncestorDefinition; }
|
---|
38 | }
|
---|
39 |
|
---|
40 | private int myAncestorIndex;
|
---|
41 | public int AncestorIndex {
|
---|
42 | get { return myAncestorIndex; }
|
---|
43 | }
|
---|
44 |
|
---|
45 | private Type myDescendantDefinition;
|
---|
46 | public Type DescendantDefinition {
|
---|
47 | get { return myDescendantDefinition; }
|
---|
48 | }
|
---|
49 |
|
---|
50 | private int myAncestorLevel;
|
---|
51 | public int AncestorLevel {
|
---|
52 | get { return myAncestorLevel; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | private double myDescendantCoefficient;
|
---|
56 | public double DescendantCoefficient {
|
---|
57 | get { return myDescendantCoefficient; }
|
---|
58 | }
|
---|
59 |
|
---|
60 | private double myDescendantVariableIndex;
|
---|
61 | public double DescendantVariableIndex {
|
---|
62 | get { return myDescendantVariableIndex; }
|
---|
63 | }
|
---|
64 |
|
---|
65 | private int myDescendantTimeOffset;
|
---|
66 | public int DescendantTimeOffset {
|
---|
67 | get { return myDescendantTimeOffset; }
|
---|
68 | }
|
---|
69 |
|
---|
70 | private SymbolicExpressionTreeNode myDescendantTreeNode;
|
---|
71 | public SymbolicExpressionTreeNode DescendantTreeNode {
|
---|
72 | get { return myDescendantTreeNode; }
|
---|
73 | }
|
---|
74 |
|
---|
75 | private int myDescendantLevel;
|
---|
76 | public int DescendantLevel {
|
---|
77 | get { return myDescendantLevel; }
|
---|
78 | }
|
---|
79 |
|
---|
80 | public int LevelDelta {
|
---|
81 | get { return (myDescendantLevel - myAncestorLevel); }
|
---|
82 | }
|
---|
83 |
|
---|
84 | public GeneticInformationItem(SymbolicExpressionTreeNode parentNode, GeneticInformationItem descendantGeneticInformationItem,
|
---|
85 | int ancestorIndex, int parentNodeLevel) {
|
---|
86 | myAncestorIndex = ancestorIndex;
|
---|
87 | myAncestorLevel = parentNodeLevel;
|
---|
88 | myAncestorDefinition = parentNode.Symbol.GetType();
|
---|
89 | myDescendantCoefficient = descendantGeneticInformationItem.DescendantCoefficient;
|
---|
90 | myDescendantDefinition = descendantGeneticInformationItem.DescendantDefinition;
|
---|
91 | myDescendantTimeOffset = descendantGeneticInformationItem.DescendantTimeOffset;
|
---|
92 | myDescendantVariableIndex = descendantGeneticInformationItem.DescendantVariableIndex;
|
---|
93 | myDescendantLevel = descendantGeneticInformationItem.DescendantLevel;
|
---|
94 | myDescendantTreeNode = descendantGeneticInformationItem.DescendantTreeNode;
|
---|
95 | }
|
---|
96 |
|
---|
97 | public static IList<GeneticInformationItem> CopyList(IList<GeneticInformationItem> geneticInformationItemsList) {
|
---|
98 | List<GeneticInformationItem> list = new List<GeneticInformationItem>(geneticInformationItemsList.Count);
|
---|
99 | list.AddRange(geneticInformationItemsList);
|
---|
100 | return list;
|
---|
101 | }
|
---|
102 |
|
---|
103 | public static string GetKey(GeneticInformationItem item) {
|
---|
104 | return item.AncestorDefinition.Name.ToString() + "," + item.DescendantDefinition.Name.ToString();
|
---|
105 | }
|
---|
106 |
|
---|
107 | public static IDictionary<string, IList<GeneticInformationItem>> GetDictionary(IList<GeneticInformationItem> geneticInformationItemsList) {
|
---|
108 | IDictionary<string, IList<GeneticInformationItem>> dictionary = new Dictionary<string, IList<GeneticInformationItem>>();
|
---|
109 | foreach (GeneticInformationItem item in geneticInformationItemsList) {
|
---|
110 | string key = GetKey(item);
|
---|
111 | if (!dictionary.ContainsKey(key))
|
---|
112 | dictionary.Add(key, new List<GeneticInformationItem>());
|
---|
113 | dictionary[key].Add(item);
|
---|
114 | }
|
---|
115 | return dictionary;
|
---|
116 | }
|
---|
117 |
|
---|
118 | public static IDictionary<string, IList<GeneticInformationItem>> CopyDictionary(IDictionary<string, IList<GeneticInformationItem>> dictionary) {
|
---|
119 | IDictionary<string, IList<GeneticInformationItem>> copy = new Dictionary<string, IList<GeneticInformationItem>>();
|
---|
120 | foreach (KeyValuePair<string, IList<GeneticInformationItem>> pair in dictionary) {
|
---|
121 | copy.Add(pair.Key, CopyList(pair.Value));
|
---|
122 | }
|
---|
123 | return copy;
|
---|
124 | }
|
---|
125 |
|
---|
126 | public static GeneticInformationItem FindBestPendant(GeneticInformationItem item, IList<GeneticInformationItem> comparisonItems,
|
---|
127 | double constantMinimum, double constantMaximum, double variableWeightSigma,
|
---|
128 | int maximumTreeHeight, int minimumTimeOffset, int maximumTimeOffset,
|
---|
129 | double levelDifferenceCoefficient, double ancestorIndexCoefficient,
|
---|
130 | double constantValueCoefficient, double variableWeightCoefficient, double timeOffsetCoefficient, double variableIndexCoefficient,
|
---|
131 | bool additiveSimilarityCalculation,
|
---|
132 | out double bestPendantSimilarity) {
|
---|
133 | int maxSimilarityIndex = -1;
|
---|
134 | double similarity, maxSimilarity = -double.MaxValue;
|
---|
135 | for (int i = 0; i < comparisonItems.Count; i++) {
|
---|
136 | similarity = Similarity(item, comparisonItems[i], constantMinimum, constantMaximum, variableWeightSigma, maximumTreeHeight, minimumTimeOffset, maximumTimeOffset,
|
---|
137 | levelDifferenceCoefficient, ancestorIndexCoefficient, constantValueCoefficient, variableWeightSigma, timeOffsetCoefficient,
|
---|
138 | variableWeightCoefficient, additiveSimilarityCalculation);
|
---|
139 | if (!double.IsNaN(similarity) && similarity > maxSimilarity) {
|
---|
140 | maxSimilarity = similarity;
|
---|
141 | maxSimilarityIndex = i;
|
---|
142 | }
|
---|
143 | }
|
---|
144 | bestPendantSimilarity = maxSimilarity;
|
---|
145 | if (maxSimilarityIndex >= 0)
|
---|
146 | return comparisonItems[maxSimilarityIndex];
|
---|
147 | else
|
---|
148 | return null;
|
---|
149 | }
|
---|
150 |
|
---|
151 | public static double Similarity(GeneticInformationItem item1, GeneticInformationItem item2,
|
---|
152 | double constantMinimum, double constantMaximum, double variableWeightSigma,
|
---|
153 | int maximumTreeHeight, int minimumTimeOffset, int maximumTimeOffset,
|
---|
154 | double levelDifferenceCoefficient, double ancestorIndexCoefficient,
|
---|
155 | double constantValueCoefficient, double variableWeightCoefficient, double timeOffsetCoefficient, double variableIndexCoefficient,
|
---|
156 | bool additiveSimilarityCalculation) {
|
---|
157 |
|
---|
158 | if (item1.AncestorDefinition != item2.AncestorDefinition || item1.DescendantDefinition != item2.DescendantDefinition)
|
---|
159 | return double.NaN;
|
---|
160 |
|
---|
161 | // the two items for sure have the same behavior definitions
|
---|
162 |
|
---|
163 | #region initialize punishments
|
---|
164 |
|
---|
165 | double punishmentContributionSum = 0;
|
---|
166 | double punishmentCoefficientsProduct = 1;
|
---|
167 |
|
---|
168 | double ancestorIndexDifferencePunishment = 0;
|
---|
169 | double levelDifferencePunishment = 0;
|
---|
170 |
|
---|
171 | double descendantConstantValueDifferencePunishment = 0;
|
---|
172 | double descendantVariableWeightDifferencePunishment = 0;
|
---|
173 | double descendantTimeOffsetDifferencePunishment = 0;
|
---|
174 | double descendantVariableIndexDifferencePunishment = 0;
|
---|
175 |
|
---|
176 | #endregion
|
---|
177 |
|
---|
178 | if (levelDifferenceCoefficient > 0) {
|
---|
179 | levelDifferencePunishment = item1.LevelDelta - item2.LevelDelta;
|
---|
180 | if (levelDifferencePunishment < 0)
|
---|
181 | levelDifferencePunishment = -levelDifferencePunishment;
|
---|
182 | levelDifferencePunishment /= maximumTreeHeight;
|
---|
183 | if (levelDifferencePunishment > 1)
|
---|
184 | levelDifferencePunishment = 1;
|
---|
185 | levelDifferencePunishment *= levelDifferenceCoefficient;
|
---|
186 | punishmentContributionSum += levelDifferenceCoefficient;
|
---|
187 | punishmentCoefficientsProduct *= (1 - levelDifferenceCoefficient);
|
---|
188 | }
|
---|
189 | if (ancestorIndexCoefficient > 0) {
|
---|
190 | if (item1.AncestorIndex != item2.AncestorIndex)
|
---|
191 | ancestorIndexDifferencePunishment = 1;
|
---|
192 | else
|
---|
193 | ancestorIndexDifferencePunishment = 0;
|
---|
194 | ancestorIndexDifferencePunishment *= ancestorIndexCoefficient;
|
---|
195 | punishmentContributionSum += ancestorIndexCoefficient;
|
---|
196 | punishmentCoefficientsProduct *= (1 - ancestorIndexCoefficient);
|
---|
197 | }
|
---|
198 |
|
---|
199 | if (item1.DescendantTreeNode is ConstantTreeNode) {
|
---|
200 | if (constantValueCoefficient > 0) {
|
---|
201 | double constantValueCoefficientDifference = Math.Abs(item1.DescendantCoefficient - item2.DescendantCoefficient);
|
---|
202 | // assume uniform distribution within given minimum and maximum
|
---|
203 | descendantConstantValueDifferencePunishment = (constantValueCoefficientDifference / (constantMaximum - constantMinimum));
|
---|
204 | if (descendantConstantValueDifferencePunishment > 1)
|
---|
205 | descendantConstantValueDifferencePunishment = 1;
|
---|
206 | descendantConstantValueDifferencePunishment *= constantValueCoefficient;
|
---|
207 | punishmentContributionSum += constantValueCoefficient;
|
---|
208 | punishmentCoefficientsProduct *= (1 - constantValueCoefficient);
|
---|
209 | }
|
---|
210 | }
|
---|
211 | if (item1.DescendantTreeNode is VariableTreeNode) {
|
---|
212 | if (variableWeightCoefficient > 0) {
|
---|
213 | double variableWeightDifference = Math.Abs(item1.DescendantCoefficient - item2.DescendantCoefficient);
|
---|
214 | // assume normal distribution within given sigma
|
---|
215 | descendantVariableWeightDifferencePunishment = variableWeightDifference / (variableWeightSigma * 4);
|
---|
216 | if (descendantVariableWeightDifferencePunishment > 1)
|
---|
217 | descendantVariableWeightDifferencePunishment = 1;
|
---|
218 | descendantVariableWeightDifferencePunishment *= variableWeightCoefficient;
|
---|
219 | punishmentContributionSum += variableWeightCoefficient;
|
---|
220 | punishmentCoefficientsProduct *= (1 - variableWeightCoefficient);
|
---|
221 | }
|
---|
222 | if (timeOffsetCoefficient > 0) {
|
---|
223 | double timeOffsetDifference = Math.Abs(item1.DescendantTimeOffset - item2.DescendantTimeOffset);
|
---|
224 | if (maximumTimeOffset > 0)
|
---|
225 | descendantTimeOffsetDifferencePunishment = timeOffsetDifference / (maximumTimeOffset - minimumTimeOffset);
|
---|
226 | descendantTimeOffsetDifferencePunishment *= timeOffsetCoefficient;
|
---|
227 | punishmentContributionSum += timeOffsetCoefficient;
|
---|
228 | punishmentCoefficientsProduct *= (1 - timeOffsetCoefficient);
|
---|
229 | }
|
---|
230 | if (variableIndexCoefficient > 0) {
|
---|
231 | if (item1.DescendantVariableIndex != item2.DescendantVariableIndex)
|
---|
232 | descendantVariableIndexDifferencePunishment = 1;
|
---|
233 | else
|
---|
234 | descendantVariableIndexDifferencePunishment = 0;
|
---|
235 | descendantVariableIndexDifferencePunishment *= variableIndexCoefficient;
|
---|
236 | punishmentContributionSum += variableIndexCoefficient;
|
---|
237 | punishmentCoefficientsProduct *= (1 - variableIndexCoefficient);
|
---|
238 | }
|
---|
239 | }
|
---|
240 |
|
---|
241 | double result;
|
---|
242 |
|
---|
243 | if (additiveSimilarityCalculation) {
|
---|
244 | double punishmentsSum = ancestorIndexDifferencePunishment + levelDifferencePunishment +
|
---|
245 | descendantConstantValueDifferencePunishment + descendantVariableWeightDifferencePunishment +
|
---|
246 | descendantTimeOffsetDifferencePunishment + descendantVariableIndexDifferencePunishment;
|
---|
247 | result = (1 - punishmentsSum / punishmentContributionSum);
|
---|
248 | } else {
|
---|
249 | result =
|
---|
250 | (1 - ancestorIndexDifferencePunishment) *
|
---|
251 | (1 - levelDifferencePunishment) *
|
---|
252 | (1 - descendantConstantValueDifferencePunishment) *
|
---|
253 | (1 - descendantVariableWeightDifferencePunishment) *
|
---|
254 | (1 - descendantTimeOffsetDifferencePunishment) *
|
---|
255 | (1 - descendantVariableIndexDifferencePunishment);
|
---|
256 | // worst possible result is (1-punishmentCoefficientsProduct), so scale linearly to [0;1]:
|
---|
257 | result = (result - punishmentCoefficientsProduct) / (1 - punishmentCoefficientsProduct);
|
---|
258 | }
|
---|
259 |
|
---|
260 | if (result < 0 || result > 1)
|
---|
261 | throw new InvalidOperationException("ERROR in GeneticInformationItem.Similarity: An invalid similarity value (" + result.ToString() + ") has been calculated.");
|
---|
262 |
|
---|
263 | return result;
|
---|
264 |
|
---|
265 | }
|
---|
266 |
|
---|
267 | public static IList<GeneticInformationItem> GetGeneticInformationItems(SymbolicExpressionTreeNode node, List<string> variableNames,
|
---|
268 | int MinimumLevelDelta, int MaximumLevelDelta) {
|
---|
269 | // first we have to collect all items, then we filter; it is not possible to filter while collecting because the items are
|
---|
270 | // collected recursively and used for collecting the parents' items.
|
---|
271 | if (MinimumLevelDelta > MaximumLevelDelta)
|
---|
272 | return new List<GeneticInformationItem>();
|
---|
273 | IList<GeneticInformationItem> list = GetGeneticInformationItems(node, variableNames, 0);
|
---|
274 | List<GeneticInformationItem> resultList = new List<GeneticInformationItem>();
|
---|
275 | foreach (GeneticInformationItem item in list)
|
---|
276 | if (item.LevelDelta >= MinimumLevelDelta && item.LevelDelta <= MaximumLevelDelta)
|
---|
277 | resultList.Add(item);
|
---|
278 | return resultList;
|
---|
279 | }
|
---|
280 |
|
---|
281 | private static IList<GeneticInformationItem> GetGeneticInformationItems(SymbolicExpressionTreeNode node, List<string> variableNames, int level) {
|
---|
282 | // Idea: collect all descendants' lists and then add new items using the retrieved ones.
|
---|
283 | // This should save lots of time and reduce complexity of the items retrieval process.
|
---|
284 | // Program roots are not considered, neither are start symbol nodes
|
---|
285 | if (node.Symbol is ProgramRootSymbol)
|
---|
286 | return GetGeneticInformationItems(node.SubTrees[0], variableNames, level + 1);
|
---|
287 | List<GeneticInformationItem> list = new List<GeneticInformationItem>();
|
---|
288 | // add item for this node:
|
---|
289 | if (!(node.Symbol is StartSymbol)) {
|
---|
290 | list.Add(new GeneticInformationItem(node, variableNames, level));
|
---|
291 | }
|
---|
292 | // add items for the descendants, but prevent multiple references to descendant nodes:
|
---|
293 | List<SymbolicExpressionTreeNode> descendantNodes = new List<SymbolicExpressionTreeNode>();
|
---|
294 | for (int i = 0; i < node.SubTrees.Count; i++) {
|
---|
295 | IList<GeneticInformationItem> descendantItems = GetGeneticInformationItems(node.SubTrees[i], variableNames, level + 1);
|
---|
296 | list.AddRange(descendantItems);
|
---|
297 | if (!(node.Symbol is StartSymbol))
|
---|
298 | foreach (GeneticInformationItem item in descendantItems) {
|
---|
299 | if (!descendantNodes.Contains(item.DescendantTreeNode)) {
|
---|
300 | list.Add(new GeneticInformationItem(node, item, i, level));
|
---|
301 | descendantNodes.Add(item.DescendantTreeNode);
|
---|
302 | }
|
---|
303 | }
|
---|
304 | }
|
---|
305 | return list;
|
---|
306 | }
|
---|
307 |
|
---|
308 | private GeneticInformationItem(SymbolicExpressionTreeNode node, List<string> variableNames, int level) {
|
---|
309 | myAncestorIndex = -1;
|
---|
310 | VariableTreeNode variableTreeNode = node as VariableTreeNode;
|
---|
311 | LaggedVariableTreeNode laggedVariableTreeNode = node as LaggedVariableTreeNode;
|
---|
312 | ConstantTreeNode constantTreeNode = node as ConstantTreeNode;
|
---|
313 | myAncestorDefinition = node.Symbol.GetType();
|
---|
314 | myDescendantDefinition = myAncestorDefinition;
|
---|
315 | if (variableTreeNode != null)
|
---|
316 | myDescendantCoefficient = variableTreeNode.Weight;
|
---|
317 | else if (constantTreeNode != null)
|
---|
318 | myDescendantCoefficient = constantTreeNode.Value;
|
---|
319 | else
|
---|
320 | myDescendantCoefficient = double.NaN;
|
---|
321 | if (laggedVariableTreeNode != null)
|
---|
322 | myDescendantTimeOffset = laggedVariableTreeNode.Lag;
|
---|
323 | else
|
---|
324 | myDescendantTimeOffset = 0;
|
---|
325 | if (variableTreeNode != null)
|
---|
326 | myDescendantVariableIndex = variableNames.IndexOf(variableTreeNode.VariableName);
|
---|
327 | else
|
---|
328 | myDescendantVariableIndex = -1;
|
---|
329 | myAncestorLevel = level;
|
---|
330 | myDescendantLevel = level;
|
---|
331 | myDescendantTreeNode = node;
|
---|
332 | }
|
---|
333 |
|
---|
334 | public override string ToString() {
|
---|
335 | return "ancestor: " + AncestorDefinition.Name.ToString() + ", [" + AncestorIndex + "]; "
|
---|
336 | + "descendant: " + DescendantDefinition.Name.ToString() + " (varIndex " + DescendantVariableIndex + ", "
|
---|
337 | + DescendantCoefficient + ", t-" + DescendantTimeOffset + ");"
|
---|
338 | + " level delta = " + DescendantLevel + "-" + AncestorLevel + " = " + LevelDelta;
|
---|
339 | }
|
---|
340 |
|
---|
341 | }
|
---|
342 |
|
---|
343 | }
|
---|