[5024] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 26 | using HeuristicLab.Optimization;
|
---|
| 27 | using HeuristicLab.Parameters;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
| 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
| 32 |
|
---|
| 33 | public class GeneticInformationItem {
|
---|
| 34 |
|
---|
| 35 | private Type myAncestorDefinition;
|
---|
| 36 | public Type AncestorDefinition {
|
---|
| 37 | get { return myAncestorDefinition; }
|
---|
| 38 | }
|
---|
| 39 |
|
---|
| 40 | private int myAncestorIndex;
|
---|
| 41 | public int AncestorIndex {
|
---|
| 42 | get { return myAncestorIndex; }
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | private Type myDescendantDefinition;
|
---|
| 46 | public Type DescendantDefinition {
|
---|
| 47 | get { return myDescendantDefinition; }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | private int myAncestorLevel;
|
---|
| 51 | public int AncestorLevel {
|
---|
| 52 | get { return myAncestorLevel; }
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | private double myDescendantCoefficient;
|
---|
| 56 | public double DescendantCoefficient {
|
---|
| 57 | get { return myDescendantCoefficient; }
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | private double myDescendantVariableIndex;
|
---|
| 61 | public double DescendantVariableIndex {
|
---|
| 62 | get { return myDescendantVariableIndex; }
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | private int myDescendantTimeOffset;
|
---|
| 66 | public int DescendantTimeOffset {
|
---|
| 67 | get { return myDescendantTimeOffset; }
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | private SymbolicExpressionTreeNode myDescendantTreeNode;
|
---|
| 71 | public SymbolicExpressionTreeNode DescendantTreeNode {
|
---|
| 72 | get { return myDescendantTreeNode; }
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | private int myDescendantLevel;
|
---|
| 76 | public int DescendantLevel {
|
---|
| 77 | get { return myDescendantLevel; }
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | public int LevelDelta {
|
---|
| 81 | get { return (myDescendantLevel - myAncestorLevel); }
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | public GeneticInformationItem(SymbolicExpressionTreeNode parentNode, GeneticInformationItem descendantGeneticInformationItem,
|
---|
| 85 | int ancestorIndex, int parentNodeLevel) {
|
---|
| 86 | myAncestorIndex = ancestorIndex;
|
---|
| 87 | myAncestorLevel = parentNodeLevel;
|
---|
| 88 | myAncestorDefinition = parentNode.Symbol.GetType();
|
---|
| 89 | myDescendantCoefficient = descendantGeneticInformationItem.DescendantCoefficient;
|
---|
| 90 | myDescendantDefinition = descendantGeneticInformationItem.DescendantDefinition;
|
---|
| 91 | myDescendantTimeOffset = descendantGeneticInformationItem.DescendantTimeOffset;
|
---|
| 92 | myDescendantVariableIndex = descendantGeneticInformationItem.DescendantVariableIndex;
|
---|
| 93 | myDescendantLevel = descendantGeneticInformationItem.DescendantLevel;
|
---|
| 94 | myDescendantTreeNode = descendantGeneticInformationItem.DescendantTreeNode;
|
---|
| 95 | }
|
---|
| 96 |
|
---|
| 97 | public static IList<GeneticInformationItem> CopyList(IList<GeneticInformationItem> geneticInformationItemsList) {
|
---|
| 98 | List<GeneticInformationItem> list = new List<GeneticInformationItem>(geneticInformationItemsList.Count);
|
---|
| 99 | list.AddRange(geneticInformationItemsList);
|
---|
| 100 | return list;
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | public static string GetKey(GeneticInformationItem item) {
|
---|
| 104 | return item.AncestorDefinition.Name.ToString() + "," + item.DescendantDefinition.Name.ToString();
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | public static IDictionary<string, IList<GeneticInformationItem>> GetDictionary(IList<GeneticInformationItem> geneticInformationItemsList) {
|
---|
| 108 | IDictionary<string, IList<GeneticInformationItem>> dictionary = new Dictionary<string, IList<GeneticInformationItem>>();
|
---|
| 109 | foreach (GeneticInformationItem item in geneticInformationItemsList) {
|
---|
| 110 | string key = GetKey(item);
|
---|
| 111 | if (!dictionary.ContainsKey(key))
|
---|
| 112 | dictionary.Add(key, new List<GeneticInformationItem>());
|
---|
| 113 | dictionary[key].Add(item);
|
---|
| 114 | }
|
---|
| 115 | return dictionary;
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | public static IDictionary<string, IList<GeneticInformationItem>> CopyDictionary(IDictionary<string, IList<GeneticInformationItem>> dictionary) {
|
---|
| 119 | IDictionary<string, IList<GeneticInformationItem>> copy = new Dictionary<string, IList<GeneticInformationItem>>();
|
---|
| 120 | foreach (KeyValuePair<string, IList<GeneticInformationItem>> pair in dictionary) {
|
---|
| 121 | copy.Add(pair.Key, CopyList(pair.Value));
|
---|
| 122 | }
|
---|
| 123 | return copy;
|
---|
| 124 | }
|
---|
| 125 |
|
---|
| 126 | public static GeneticInformationItem FindBestPendant(GeneticInformationItem item, IList<GeneticInformationItem> comparisonItems,
|
---|
| 127 | double constantMinimum, double constantMaximum, double variableWeightSigma,
|
---|
| 128 | int maximumTreeHeight, int minimumTimeOffset, int maximumTimeOffset,
|
---|
| 129 | double levelDifferenceCoefficient, double ancestorIndexCoefficient,
|
---|
| 130 | double constantValueCoefficient, double variableWeightCoefficient, double timeOffsetCoefficient, double variableIndexCoefficient,
|
---|
| 131 | bool additiveSimilarityCalculation,
|
---|
| 132 | out double bestPendantSimilarity) {
|
---|
| 133 | int maxSimilarityIndex = -1;
|
---|
| 134 | double similarity, maxSimilarity = -double.MaxValue;
|
---|
| 135 | for (int i = 0; i < comparisonItems.Count; i++) {
|
---|
| 136 | similarity = Similarity(item, comparisonItems[i], constantMinimum, constantMaximum, variableWeightSigma, maximumTreeHeight, minimumTimeOffset, maximumTimeOffset,
|
---|
| 137 | levelDifferenceCoefficient, ancestorIndexCoefficient, constantValueCoefficient, variableWeightSigma, timeOffsetCoefficient,
|
---|
| 138 | variableWeightCoefficient, additiveSimilarityCalculation);
|
---|
| 139 | if (!double.IsNaN(similarity) && similarity > maxSimilarity) {
|
---|
| 140 | maxSimilarity = similarity;
|
---|
| 141 | maxSimilarityIndex = i;
|
---|
| 142 | }
|
---|
| 143 | }
|
---|
| 144 | bestPendantSimilarity = maxSimilarity;
|
---|
| 145 | if (maxSimilarityIndex >= 0)
|
---|
| 146 | return comparisonItems[maxSimilarityIndex];
|
---|
| 147 | else
|
---|
| 148 | return null;
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | public static double Similarity(GeneticInformationItem item1, GeneticInformationItem item2,
|
---|
| 152 | double constantMinimum, double constantMaximum, double variableWeightSigma,
|
---|
| 153 | int maximumTreeHeight, int minimumTimeOffset, int maximumTimeOffset,
|
---|
| 154 | double levelDifferenceCoefficient, double ancestorIndexCoefficient,
|
---|
| 155 | double constantValueCoefficient, double variableWeightCoefficient, double timeOffsetCoefficient, double variableIndexCoefficient,
|
---|
| 156 | bool additiveSimilarityCalculation) {
|
---|
| 157 |
|
---|
| 158 | if (item1.AncestorDefinition != item2.AncestorDefinition || item1.DescendantDefinition != item2.DescendantDefinition)
|
---|
| 159 | return double.NaN;
|
---|
| 160 |
|
---|
| 161 | // the two items for sure have the same behavior definitions
|
---|
| 162 |
|
---|
| 163 | #region initialize punishments
|
---|
| 164 |
|
---|
| 165 | double punishmentContributionSum = 0;
|
---|
| 166 | double punishmentCoefficientsProduct = 1;
|
---|
| 167 |
|
---|
| 168 | double ancestorIndexDifferencePunishment = 0;
|
---|
| 169 | double levelDifferencePunishment = 0;
|
---|
| 170 |
|
---|
| 171 | double descendantConstantValueDifferencePunishment = 0;
|
---|
| 172 | double descendantVariableWeightDifferencePunishment = 0;
|
---|
| 173 | double descendantTimeOffsetDifferencePunishment = 0;
|
---|
| 174 | double descendantVariableIndexDifferencePunishment = 0;
|
---|
| 175 |
|
---|
| 176 | #endregion
|
---|
| 177 |
|
---|
| 178 | if (levelDifferenceCoefficient > 0) {
|
---|
| 179 | levelDifferencePunishment = item1.LevelDelta - item2.LevelDelta;
|
---|
| 180 | if (levelDifferencePunishment < 0)
|
---|
| 181 | levelDifferencePunishment = -levelDifferencePunishment;
|
---|
| 182 | levelDifferencePunishment /= maximumTreeHeight;
|
---|
| 183 | if (levelDifferencePunishment > 1)
|
---|
| 184 | levelDifferencePunishment = 1;
|
---|
| 185 | levelDifferencePunishment *= levelDifferenceCoefficient;
|
---|
| 186 | punishmentContributionSum += levelDifferenceCoefficient;
|
---|
| 187 | punishmentCoefficientsProduct *= (1 - levelDifferenceCoefficient);
|
---|
| 188 | }
|
---|
| 189 | if (ancestorIndexCoefficient > 0) {
|
---|
| 190 | if (item1.AncestorIndex != item2.AncestorIndex)
|
---|
| 191 | ancestorIndexDifferencePunishment = 1;
|
---|
| 192 | else
|
---|
| 193 | ancestorIndexDifferencePunishment = 0;
|
---|
| 194 | ancestorIndexDifferencePunishment *= ancestorIndexCoefficient;
|
---|
| 195 | punishmentContributionSum += ancestorIndexCoefficient;
|
---|
| 196 | punishmentCoefficientsProduct *= (1 - ancestorIndexCoefficient);
|
---|
| 197 | }
|
---|
| 198 |
|
---|
| 199 | if (item1.DescendantTreeNode is ConstantTreeNode) {
|
---|
| 200 | if (constantValueCoefficient > 0) {
|
---|
| 201 | double constantValueCoefficientDifference = Math.Abs(item1.DescendantCoefficient - item2.DescendantCoefficient);
|
---|
| 202 | // assume uniform distribution within given minimum and maximum
|
---|
| 203 | descendantConstantValueDifferencePunishment = (constantValueCoefficientDifference / (constantMaximum - constantMinimum));
|
---|
| 204 | if (descendantConstantValueDifferencePunishment > 1)
|
---|
| 205 | descendantConstantValueDifferencePunishment = 1;
|
---|
| 206 | descendantConstantValueDifferencePunishment *= constantValueCoefficient;
|
---|
| 207 | punishmentContributionSum += constantValueCoefficient;
|
---|
| 208 | punishmentCoefficientsProduct *= (1 - constantValueCoefficient);
|
---|
| 209 | }
|
---|
| 210 | }
|
---|
| 211 | if (item1.DescendantTreeNode is VariableTreeNode) {
|
---|
| 212 | if (variableWeightCoefficient > 0) {
|
---|
| 213 | double variableWeightDifference = Math.Abs(item1.DescendantCoefficient - item2.DescendantCoefficient);
|
---|
| 214 | // assume normal distribution within given sigma
|
---|
| 215 | descendantVariableWeightDifferencePunishment = variableWeightDifference / (variableWeightSigma * 4);
|
---|
| 216 | if (descendantVariableWeightDifferencePunishment > 1)
|
---|
| 217 | descendantVariableWeightDifferencePunishment = 1;
|
---|
| 218 | descendantVariableWeightDifferencePunishment *= variableWeightCoefficient;
|
---|
| 219 | punishmentContributionSum += variableWeightCoefficient;
|
---|
| 220 | punishmentCoefficientsProduct *= (1 - variableWeightCoefficient);
|
---|
| 221 | }
|
---|
| 222 | if (timeOffsetCoefficient > 0) {
|
---|
| 223 | double timeOffsetDifference = Math.Abs(item1.DescendantTimeOffset - item2.DescendantTimeOffset);
|
---|
| 224 | if (maximumTimeOffset > 0)
|
---|
| 225 | descendantTimeOffsetDifferencePunishment = timeOffsetDifference / (maximumTimeOffset - minimumTimeOffset);
|
---|
| 226 | descendantTimeOffsetDifferencePunishment *= timeOffsetCoefficient;
|
---|
| 227 | punishmentContributionSum += timeOffsetCoefficient;
|
---|
| 228 | punishmentCoefficientsProduct *= (1 - timeOffsetCoefficient);
|
---|
| 229 | }
|
---|
| 230 | if (variableIndexCoefficient > 0) {
|
---|
| 231 | if (item1.DescendantVariableIndex != item2.DescendantVariableIndex)
|
---|
| 232 | descendantVariableIndexDifferencePunishment = 1;
|
---|
| 233 | else
|
---|
| 234 | descendantVariableIndexDifferencePunishment = 0;
|
---|
| 235 | descendantVariableIndexDifferencePunishment *= variableIndexCoefficient;
|
---|
| 236 | punishmentContributionSum += variableIndexCoefficient;
|
---|
| 237 | punishmentCoefficientsProduct *= (1 - variableIndexCoefficient);
|
---|
| 238 | }
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | double result;
|
---|
| 242 |
|
---|
| 243 | if (additiveSimilarityCalculation) {
|
---|
| 244 | double punishmentsSum = ancestorIndexDifferencePunishment + levelDifferencePunishment +
|
---|
| 245 | descendantConstantValueDifferencePunishment + descendantVariableWeightDifferencePunishment +
|
---|
| 246 | descendantTimeOffsetDifferencePunishment + descendantVariableIndexDifferencePunishment;
|
---|
| 247 | result = (1 - punishmentsSum / punishmentContributionSum);
|
---|
| 248 | } else {
|
---|
| 249 | result =
|
---|
| 250 | (1 - ancestorIndexDifferencePunishment) *
|
---|
| 251 | (1 - levelDifferencePunishment) *
|
---|
| 252 | (1 - descendantConstantValueDifferencePunishment) *
|
---|
| 253 | (1 - descendantVariableWeightDifferencePunishment) *
|
---|
| 254 | (1 - descendantTimeOffsetDifferencePunishment) *
|
---|
| 255 | (1 - descendantVariableIndexDifferencePunishment);
|
---|
| 256 | // worst possible result is (1-punishmentCoefficientsProduct), so scale linearly to [0;1]:
|
---|
| 257 | result = (result - punishmentCoefficientsProduct) / (1 - punishmentCoefficientsProduct);
|
---|
| 258 | }
|
---|
| 259 |
|
---|
| 260 | if (result < 0 || result > 1)
|
---|
| 261 | throw new InvalidOperationException("ERROR in GeneticInformationItem.Similarity: An invalid similarity value (" + result.ToString() + ") has been calculated.");
|
---|
| 262 |
|
---|
| 263 | return result;
|
---|
| 264 |
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 | public static IList<GeneticInformationItem> GetGeneticInformationItems(SymbolicExpressionTreeNode node, List<string> variableNames,
|
---|
| 268 | int MinimumLevelDelta, int MaximumLevelDelta) {
|
---|
| 269 | // first we have to collect all items, then we filter; it is not possible to filter while collecting because the items are
|
---|
| 270 | // collected recursively and used for collecting the parents' items.
|
---|
| 271 | if (MinimumLevelDelta > MaximumLevelDelta)
|
---|
| 272 | return new List<GeneticInformationItem>();
|
---|
| 273 | IList<GeneticInformationItem> list = GetGeneticInformationItems(node, variableNames, 0);
|
---|
| 274 | List<GeneticInformationItem> resultList = new List<GeneticInformationItem>();
|
---|
| 275 | foreach (GeneticInformationItem item in list)
|
---|
| 276 | if (item.LevelDelta >= MinimumLevelDelta && item.LevelDelta <= MaximumLevelDelta)
|
---|
| 277 | resultList.Add(item);
|
---|
| 278 | return resultList;
|
---|
| 279 | }
|
---|
| 280 |
|
---|
| 281 | private static IList<GeneticInformationItem> GetGeneticInformationItems(SymbolicExpressionTreeNode node, List<string> variableNames, int level) {
|
---|
| 282 | // Idea: collect all descendants' lists and then add new items using the retrieved ones.
|
---|
| 283 | // This should save lots of time and reduce complexity of the items retrieval process.
|
---|
| 284 | // Program roots are not considered, neither are start symbol nodes
|
---|
| 285 | if (node.Symbol is ProgramRootSymbol)
|
---|
| 286 | return GetGeneticInformationItems(node.SubTrees[0], variableNames, level + 1);
|
---|
| 287 | List<GeneticInformationItem> list = new List<GeneticInformationItem>();
|
---|
| 288 | // add item for this node:
|
---|
| 289 | if (!(node.Symbol is StartSymbol)) {
|
---|
| 290 | list.Add(new GeneticInformationItem(node, variableNames, level));
|
---|
| 291 | }
|
---|
| 292 | // add items for the descendants, but prevent multiple references to descendant nodes:
|
---|
| 293 | List<SymbolicExpressionTreeNode> descendantNodes = new List<SymbolicExpressionTreeNode>();
|
---|
| 294 | for (int i = 0; i < node.SubTrees.Count; i++) {
|
---|
| 295 | IList<GeneticInformationItem> descendantItems = GetGeneticInformationItems(node.SubTrees[i], variableNames, level + 1);
|
---|
| 296 | list.AddRange(descendantItems);
|
---|
| 297 | if (!(node.Symbol is StartSymbol))
|
---|
| 298 | foreach (GeneticInformationItem item in descendantItems) {
|
---|
| 299 | if (!descendantNodes.Contains(item.DescendantTreeNode)) {
|
---|
| 300 | list.Add(new GeneticInformationItem(node, item, i, level));
|
---|
| 301 | descendantNodes.Add(item.DescendantTreeNode);
|
---|
| 302 | }
|
---|
| 303 | }
|
---|
| 304 | }
|
---|
| 305 | return list;
|
---|
| 306 | }
|
---|
| 307 |
|
---|
| 308 | private GeneticInformationItem(SymbolicExpressionTreeNode node, List<string> variableNames, int level) {
|
---|
| 309 | myAncestorIndex = -1;
|
---|
| 310 | VariableTreeNode variableTreeNode = node as VariableTreeNode;
|
---|
| 311 | LaggedVariableTreeNode laggedVariableTreeNode = node as LaggedVariableTreeNode;
|
---|
| 312 | ConstantTreeNode constantTreeNode = node as ConstantTreeNode;
|
---|
| 313 | myAncestorDefinition = node.Symbol.GetType();
|
---|
| 314 | myDescendantDefinition = myAncestorDefinition;
|
---|
| 315 | if (variableTreeNode != null)
|
---|
| 316 | myDescendantCoefficient = variableTreeNode.Weight;
|
---|
| 317 | else if (constantTreeNode != null)
|
---|
| 318 | myDescendantCoefficient = constantTreeNode.Value;
|
---|
| 319 | else
|
---|
| 320 | myDescendantCoefficient = double.NaN;
|
---|
| 321 | if (laggedVariableTreeNode != null)
|
---|
| 322 | myDescendantTimeOffset = laggedVariableTreeNode.Lag;
|
---|
| 323 | else
|
---|
| 324 | myDescendantTimeOffset = 0;
|
---|
| 325 | if (variableTreeNode != null)
|
---|
| 326 | myDescendantVariableIndex = variableNames.IndexOf(variableTreeNode.VariableName);
|
---|
| 327 | else
|
---|
| 328 | myDescendantVariableIndex = -1;
|
---|
| 329 | myAncestorLevel = level;
|
---|
| 330 | myDescendantLevel = level;
|
---|
| 331 | myDescendantTreeNode = node;
|
---|
| 332 | }
|
---|
| 333 |
|
---|
| 334 | public override string ToString() {
|
---|
| 335 | return "ancestor: " + AncestorDefinition.Name.ToString() + ", [" + AncestorIndex + "]; "
|
---|
| 336 | + "descendant: " + DescendantDefinition.Name.ToString() + " (varIndex " + DescendantVariableIndex + ", "
|
---|
| 337 | + DescendantCoefficient + ", t-" + DescendantTimeOffset + ");"
|
---|
| 338 | + " level delta = " + DescendantLevel + "-" + AncestorLevel + " = " + LevelDelta;
|
---|
| 339 | }
|
---|
| 340 |
|
---|
| 341 | }
|
---|
| 342 |
|
---|
| 343 | }
|
---|