#region License Information
/* HeuristicLab
* Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
///
/// An operator that analyzes the training best symbolic data analysis solution for single objective symbolic data analysis problems.
///
[Item("SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic data analysis solution for single objective symbolic data analysis problems.")]
[StorableClass]
public abstract class SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveAnalyzer, IIterationBasedOperator
where T : class, ISymbolicDataAnalysisSolution {
private const string TrainingBestSolutionParameterName = "Best training solution";
private const string TrainingBestSolutionQualityParameterName = "Best training solution quality";
private const string TrainingBestSolutionGenerationParameterName = "Best training solution generation";
private const string UpdateAlwaysParameterName = "Always update best solution";
private const string IterationsParameterName = "Iterations";
private const string MaximumIterationsParameterName = "Maximum Iterations";
#region parameter properties
public ILookupParameter TrainingBestSolutionParameter {
get { return (ILookupParameter)Parameters[TrainingBestSolutionParameterName]; }
}
public ILookupParameter TrainingBestSolutionQualityParameter {
get { return (ILookupParameter)Parameters[TrainingBestSolutionQualityParameterName]; }
}
public ILookupParameter TrainingBestSolutionGenerationParameter {
get { return (ILookupParameter)Parameters[TrainingBestSolutionGenerationParameterName]; }
}
public IFixedValueParameter UpdateAlwaysParameter {
get { return (IFixedValueParameter)Parameters[UpdateAlwaysParameterName]; }
}
public ILookupParameter IterationsParameter {
get { return (ILookupParameter)Parameters[IterationsParameterName]; }
}
public IValueLookupParameter MaximumIterationsParameter {
get { return (IValueLookupParameter)Parameters[MaximumIterationsParameterName]; }
}
#endregion
#region properties
public T TrainingBestSolution {
get { return TrainingBestSolutionParameter.ActualValue; }
set { TrainingBestSolutionParameter.ActualValue = value; }
}
public DoubleValue TrainingBestSolutionQuality {
get { return TrainingBestSolutionQualityParameter.ActualValue; }
set { TrainingBestSolutionQualityParameter.ActualValue = value; }
}
public BoolValue UpdateAlways {
get { return UpdateAlwaysParameter.Value; }
}
#endregion
[StorableConstructor]
protected SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
protected SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer(SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
public SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer()
: base() {
Parameters.Add(new LookupParameter(TrainingBestSolutionParameterName, "The training best symbolic data analyis solution."));
Parameters.Add(new LookupParameter(TrainingBestSolutionQualityParameterName, "The quality of the training best symbolic data analysis solution."));
Parameters.Add(new LookupParameter(TrainingBestSolutionGenerationParameterName, "The generation in which the best training solution was found."));
Parameters.Add(new FixedValueParameter(UpdateAlwaysParameterName, "Determines if the best training solution should always be updated regardless of its quality.", new BoolValue(false)));
Parameters.Add(new LookupParameter(IterationsParameterName, "The number of performed iterations."));
Parameters.Add(new ValueLookupParameter(MaximumIterationsParameterName, "The maximum number of performed iterations.") { Hidden = true });
UpdateAlwaysParameter.Hidden = true;
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
if (!Parameters.ContainsKey(UpdateAlwaysParameterName)) {
Parameters.Add(new FixedValueParameter(UpdateAlwaysParameterName, "Determines if the best training solution should always be updated regardless of its quality.", new BoolValue(false)));
UpdateAlwaysParameter.Hidden = true;
}
if (!Parameters.ContainsKey(TrainingBestSolutionGenerationParameterName))
Parameters.Add(new LookupParameter(TrainingBestSolutionGenerationParameterName, "The generation in which the best training solution was found."));
if (!Parameters.ContainsKey(IterationsParameterName))
Parameters.Add(new LookupParameter(IterationsParameterName, "The number of performed iterations."));
if (!Parameters.ContainsKey(MaximumIterationsParameterName))
Parameters.Add(new ValueLookupParameter(MaximumIterationsParameterName, "The maximum number of performed iterations.") { Hidden = true });
}
public override IOperation Apply() {
#region find best tree
double bestQuality = Maximization.Value ? double.NegativeInfinity : double.PositiveInfinity;
ISymbolicExpressionTree bestTree = null;
ISymbolicExpressionTree[] tree = SymbolicExpressionTree.ToArray();
double[] quality = Quality.Select(x => x.Value).ToArray();
for (int i = 0; i < tree.Length; i++) {
if (IsBetter(quality[i], bestQuality, Maximization.Value)) {
bestQuality = quality[i];
bestTree = tree[i];
}
}
#endregion
var results = ResultCollection;
if (bestTree != null && (UpdateAlways.Value || TrainingBestSolutionQuality == null ||
IsBetter(bestQuality, TrainingBestSolutionQuality.Value, Maximization.Value))) {
TrainingBestSolution = CreateSolution(bestTree, bestQuality);
TrainingBestSolutionQuality = new DoubleValue(bestQuality);
if (IterationsParameter.ActualValue != null)
TrainingBestSolutionGenerationParameter.ActualValue = new IntValue(IterationsParameter.ActualValue.Value);
if (!results.ContainsKey(TrainingBestSolutionParameter.Name)) {
results.Add(new Result(TrainingBestSolutionParameter.Name, TrainingBestSolutionParameter.Description, TrainingBestSolution));
results.Add(new Result(TrainingBestSolutionQualityParameter.Name, TrainingBestSolutionQualityParameter.Description, TrainingBestSolutionQuality));
if (TrainingBestSolutionGenerationParameter.ActualValue != null)
results.Add(new Result(TrainingBestSolutionGenerationParameter.Name, TrainingBestSolutionGenerationParameter.Description, TrainingBestSolutionGenerationParameter.ActualValue));
} else {
results[TrainingBestSolutionParameter.Name].Value = TrainingBestSolution;
results[TrainingBestSolutionQualityParameter.Name].Value = TrainingBestSolutionQuality;
if (TrainingBestSolutionGenerationParameter.ActualValue != null)
results[TrainingBestSolutionGenerationParameter.Name].Value = TrainingBestSolutionGenerationParameter.ActualValue;
}
}
return base.Apply();
}
protected abstract T CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality);
private bool IsBetter(double lhs, double rhs, bool maximization) {
if (maximization) return lhs > rhs;
else return lhs < rhs;
}
}
}