#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Evaluators {
public class SimpleNMSEEvaluator : SimpleEvaluator {
public ILookupParameter NormalizedMeanSquaredErrorParameter {
get { return (ILookupParameter)Parameters["NormalizedMeanSquaredError"]; }
}
[StorableConstructor]
protected SimpleNMSEEvaluator(bool deserializing) : base(deserializing) { }
protected SimpleNMSEEvaluator(SimpleNMSEEvaluator original, Cloner cloner)
: base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SimpleNMSEEvaluator(this, cloner);
}
public SimpleNMSEEvaluator() {
Parameters.Add(new LookupParameter("NormalizedMeanSquaredError", "The normalized mean squared error (divided by variance) of estimated values."));
}
protected override void Apply(DoubleMatrix values) {
var original = from i in Enumerable.Range(0, values.Rows)
select values[i, ORIGINAL_INDEX];
var estimated = from i in Enumerable.Range(0, values.Rows)
select values[i, ESTIMATION_INDEX];
NormalizedMeanSquaredErrorParameter.ActualValue = new DoubleValue(Calculate(original, estimated));
}
public static double Calculate(IEnumerable original, IEnumerable estimated) {
OnlineNormalizedMeanSquaredErrorEvaluator nmseEvaluator = new OnlineNormalizedMeanSquaredErrorEvaluator();
var originalEnumerator = original.GetEnumerator();
var estimatedEnumerator = estimated.GetEnumerator();
while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
nmseEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
}
if (originalEnumerator.MoveNext() || estimatedEnumerator.MoveNext()) {
throw new ArgumentException("Number of elements in original and estimated enumerations doesn't match.");
}
return nmseEvaluator.NormalizedMeanSquaredError;
}
}
}