#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.ArchitectureManipulators {
///
/// Creates a new argument within one function-defining branch of a symbolic expression tree.
/// As described in Koza, Bennett, Andre, Keane, Genetic Programming III - Darwinian Invention and Problem Solving, 1999, pp. 106
///
[Item("ArgumentCreater", "Manipulates a symbolic expression by creating a new argument within one function-defining branch.")]
[StorableClass]
public sealed class ArgumentCreater : SymbolicExpressionTreeArchitectureManipulator {
[StorableConstructor]
private ArgumentCreater(bool deserializing) : base(deserializing) { }
private ArgumentCreater(ArgumentCreater original, Cloner cloner) : base(original, cloner) { }
public ArgumentCreater() : base() { }
public override sealed void ModifyArchitecture(
IRandom random,
SymbolicExpressionTree symbolicExpressionTree,
ISymbolicExpressionGrammar grammar,
IntValue maxTreeSize, IntValue maxTreeHeight,
IntValue maxFunctionDefiningBranches, IntValue maxFunctionArguments,
out bool success) {
success = CreateNewArgument(random, symbolicExpressionTree, grammar, maxTreeSize.Value, maxTreeHeight.Value, maxFunctionDefiningBranches.Value, maxFunctionArguments.Value);
}
public override IDeepCloneable Clone(Cloner cloner) {
return new ArgumentCreater(this, cloner);
}
public static bool CreateNewArgument(
IRandom random,
SymbolicExpressionTree symbolicExpressionTree,
ISymbolicExpressionGrammar grammar,
int maxTreeSize, int maxTreeHeight,
int maxFunctionDefiningBranches, int maxFunctionArguments) {
// work on a copy in case we find out later that the tree would be too big
// in this case it's easiest to simply return the original tree.
SymbolicExpressionTree clonedTree = (SymbolicExpressionTree)symbolicExpressionTree.Clone();
var functionDefiningBranches = clonedTree.IterateNodesPrefix().OfType();
if (functionDefiningBranches.Count() == 0)
// no function defining branch found => abort
return false;
// select a random function defining branch
var selectedDefunBranch = functionDefiningBranches.SelectRandom(random);
var definedArguments = (from symbol in selectedDefunBranch.Grammar.Symbols.OfType()
select symbol.ArgumentIndex).Distinct();
if (definedArguments.Count() >= maxFunctionArguments)
// max number of arguments reached => abort
return false;
var allowedArgumentIndexes = Enumerable.Range(0, maxFunctionArguments);
var newArgumentIndex = allowedArgumentIndexes.Except(definedArguments).First();
ArgumentTreeNode newArgumentNode = MakeArgumentNode(newArgumentIndex);
// this operation potentially creates very big trees so the access to the size property might throw overflow exception
try {
if (CreateNewArgumentForDefun(random, clonedTree, selectedDefunBranch, newArgumentNode) && clonedTree.Size < maxTreeSize && clonedTree.Height < maxTreeHeight) {
// size constraints are fulfilled
// replace root of original tree with root of manipulated tree
symbolicExpressionTree.Root = clonedTree.Root;
return true;
} else {
// keep originalTree
return false;
}
}
catch (OverflowException) {
// keep original tree
return false;
}
}
private static bool CreateNewArgumentForDefun(IRandom random, SymbolicExpressionTree tree, DefunTreeNode defunBranch, ArgumentTreeNode newArgumentNode) {
// select a random cut point in the function defining branch
// the branch at the cut point is to be replaced by a new argument node
var cutPoints = (from node in defunBranch.IterateNodesPrefix()
where node.SubTrees.Count > 0
from subtree in node.SubTrees
select new { Parent = node, ReplacedChildIndex = node.SubTrees.IndexOf(subtree), ReplacedChild = subtree }).ToList();
if (cutPoints.Count() == 0)
// no cut point found => abort;
return false;
var selectedCutPoint = cutPoints[random.Next(cutPoints.Count)];
// replace the branch at the cut point with an argument node
var replacedBranch = selectedCutPoint.ReplacedChild;
selectedCutPoint.Parent.RemoveSubTree(selectedCutPoint.ReplacedChildIndex);
selectedCutPoint.Parent.InsertSubTree(selectedCutPoint.ReplacedChildIndex, newArgumentNode);
// find all old invocations of the selected ADF and attach a cloned version of the replaced branch (with all argument-nodes expanded)
// iterate in post-fix order to make sure that the subtrees of n are already adapted when n is processed
var invocationNodes = (from node in tree.IterateNodesPostfix().OfType()
where node.Symbol.FunctionName == defunBranch.FunctionName
where node.SubTrees.Count == defunBranch.NumberOfArguments
select node).ToList();
// do this repeatedly until no matching invocations are found
while (invocationNodes.Count > 0) {
List newlyAddedBranches = new List();
foreach (var invocationNode in invocationNodes) {
// check that the invocation node really has the correct number of arguments
if (invocationNode.SubTrees.Count != defunBranch.NumberOfArguments) throw new InvalidOperationException();
// append a new argument branch after expanding all argument nodes
var clonedBranch = (SymbolicExpressionTreeNode)replacedBranch.Clone();
clonedBranch = ReplaceArgumentsInBranch(clonedBranch, invocationNode.SubTrees);
invocationNode.InsertSubTree(newArgumentNode.Symbol.ArgumentIndex, clonedBranch);
newlyAddedBranches.Add(clonedBranch);
}
// iterate in post-fix order to make sure that the subtrees of n are already adapted when n is processed
invocationNodes = (from newlyAddedBranch in newlyAddedBranches
from node in newlyAddedBranch.IterateNodesPostfix().OfType()
where node.Symbol.FunctionName == defunBranch.FunctionName
where node.SubTrees.Count == defunBranch.NumberOfArguments
select node).ToList();
}
// increase expected number of arguments of function defining branch
// it's possible that the number of actually referenced arguments was reduced (all references were replaced by a single new argument)
// but the number of expected arguments is increased anyway
defunBranch.NumberOfArguments++;
defunBranch.Grammar.AddSymbol(newArgumentNode.Symbol);
defunBranch.Grammar.SetMinSubtreeCount(newArgumentNode.Symbol, 0);
defunBranch.Grammar.SetMaxSubtreeCount(newArgumentNode.Symbol, 0);
// allow the argument as child of any other symbol
foreach (var symb in defunBranch.Grammar.Symbols)
for (int i = 0; i < defunBranch.Grammar.GetMaxSubtreeCount(symb); i++) {
defunBranch.Grammar.SetAllowedChild(symb, newArgumentNode.Symbol, i);
}
foreach (var subtree in tree.Root.SubTrees) {
// when the changed function is known in the branch then update the number of arguments
var matchingSymbol = subtree.Grammar.Symbols.OfType().Where(s => s.FunctionName == defunBranch.FunctionName).SingleOrDefault();
if (matchingSymbol != null) {
subtree.Grammar.SetMinSubtreeCount(matchingSymbol, defunBranch.NumberOfArguments);
subtree.Grammar.SetMaxSubtreeCount(matchingSymbol, defunBranch.NumberOfArguments);
foreach (var child in subtree.GetAllowedSymbols(0)) {
for (int i = 0; i < subtree.Grammar.GetMaxSubtreeCount(matchingSymbol); i++) {
subtree.Grammar.SetAllowedChild(matchingSymbol, child, i);
}
}
}
}
return true;
}
private static SymbolicExpressionTreeNode ReplaceArgumentsInBranch(SymbolicExpressionTreeNode branch, IList argumentTrees) {
ArgumentTreeNode argNode = branch as ArgumentTreeNode;
if (argNode != null) {
// replace argument nodes by a clone of the original subtree that provided the result for the argument node
return (SymbolicExpressionTreeNode)argumentTrees[argNode.Symbol.ArgumentIndex].Clone();
} else {
// call recursively for all subtree
List subtrees = new List(branch.SubTrees);
while (branch.SubTrees.Count > 0) branch.RemoveSubTree(0);
foreach (var subtree in subtrees) {
branch.AddSubTree(ReplaceArgumentsInBranch(subtree, argumentTrees));
}
return branch;
}
}
private static ArgumentTreeNode MakeArgumentNode(int argIndex) {
var node = (ArgumentTreeNode)(new Argument(argIndex)).CreateTreeNode();
return node;
}
}
}