#region License Information
/* HeuristicLab
* Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
[Item("Pearson R² & Tree Complexity Evaluator", "Calculates the Pearson R² and the tree complexity of a symbolic regression solution.")]
[StorableClass]
public class SymbolicRegressionMultiObjectivePearsonRSquaredTreeComplexityEvaluator : SymbolicRegressionMultiObjectiveEvaluator {
private string useConstantOptimizationParameterName = "Use constant optimization";
public IFixedValueParameter UseConstantOptimizationParameter {
get { return (IFixedValueParameter)Parameters[useConstantOptimizationParameterName]; }
}
public bool UseConstantOptimization {
get { return UseConstantOptimizationParameter.Value.Value; }
set { UseConstantOptimizationParameter.Value.Value = value; }
}
[StorableConstructor]
protected SymbolicRegressionMultiObjectivePearsonRSquaredTreeComplexityEvaluator(bool deserializing) : base(deserializing) { }
protected SymbolicRegressionMultiObjectivePearsonRSquaredTreeComplexityEvaluator(SymbolicRegressionMultiObjectivePearsonRSquaredTreeComplexityEvaluator original, Cloner cloner)
: base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicRegressionMultiObjectivePearsonRSquaredTreeComplexityEvaluator(this, cloner);
}
public SymbolicRegressionMultiObjectivePearsonRSquaredTreeComplexityEvaluator()
: base() {
Parameters.Add(new FixedValueParameter(useConstantOptimizationParameterName, "", new BoolValue(false)));
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
if (!Parameters.ContainsKey(useConstantOptimizationParameterName)) {
Parameters.Add(new FixedValueParameter(useConstantOptimizationParameterName, "", new BoolValue(false)));
}
}
public override IEnumerable Maximization { get { return new bool[2] { true, false }; } }
public override IOperation InstrumentedApply() {
IEnumerable rows = GenerateRowsToEvaluate();
var solution = SymbolicExpressionTreeParameter.ActualValue;
var problemData = ProblemDataParameter.ActualValue;
var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
var estimationLimits = EstimationLimitsParameter.ActualValue;
var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
if (UseConstantOptimization) {
SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, solution, problemData, rows, applyLinearScaling, 5, estimationLimits.Upper, estimationLimits.Lower);
}
double[] qualities = Calculate(interpreter, solution, estimationLimits.Lower, estimationLimits.Upper, problemData, rows, applyLinearScaling);
QualitiesParameter.ActualValue = new DoubleArray(qualities);
return base.InstrumentedApply();
}
public static double[] Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable rows, bool applyLinearScaling) {
double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
return new double[2] { r2, SymbolicDataAnalysisModelComplexityAnalyzer.CalculateComplexity(solution.Root.GetSubtree(0).GetSubtree(0)) };
}
public override double[] Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable rows) {
SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
EstimationLimitsParameter.ExecutionContext = context;
ApplyLinearScalingParameter.ExecutionContext = context;
double[] quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
EstimationLimitsParameter.ExecutionContext = null;
ApplyLinearScalingParameter.ExecutionContext = null;
return quality;
}
}
}