#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis {
///
/// Represents a classification solution that uses a discriminant function and classification thresholds.
///
[StorableClass]
[Item("DiscriminantFunctionClassificationSolution", "Represents a classification solution that uses a discriminant function and classification thresholds.")]
public class DiscriminantFunctionClassificationSolution : ClassificationSolution, IDiscriminantFunctionClassificationSolution {
public new IDiscriminantFunctionClassificationModel Model {
get { return (IDiscriminantFunctionClassificationModel)base.Model; }
protected set {
if (value != null && value != Model) {
if (Model != null) {
Model.ThresholdsChanged -= new EventHandler(Model_ThresholdsChanged);
}
value.ThresholdsChanged += new EventHandler(Model_ThresholdsChanged);
base.Model = value;
}
}
}
[StorableConstructor]
protected DiscriminantFunctionClassificationSolution(bool deserializing) : base(deserializing) { }
protected DiscriminantFunctionClassificationSolution(DiscriminantFunctionClassificationSolution original, Cloner cloner)
: base(original, cloner) {
RegisterEventHandler();
}
public DiscriminantFunctionClassificationSolution(IRegressionModel model, IClassificationProblemData problemData)
: this(new DiscriminantFunctionClassificationModel(model), problemData) {
}
public DiscriminantFunctionClassificationSolution(IDiscriminantFunctionClassificationModel model, IClassificationProblemData problemData)
: base(model, problemData) {
RegisterEventHandler();
SetAccuracyMaximizingThresholds();
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
RegisterEventHandler();
}
private void RegisterEventHandler() {
Model.ThresholdsChanged += new EventHandler(Model_ThresholdsChanged);
}
private void Model_ThresholdsChanged(object sender, EventArgs e) {
OnModelThresholdsChanged(e);
}
public void SetAccuracyMaximizingThresholds() {
double[] classValues;
double[] thresholds;
var targetClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
AccuracyMaximizationThresholdCalculator.CalculateThresholds(ProblemData, EstimatedTrainingValues, targetClassValues, out classValues, out thresholds);
Model.SetThresholdsAndClassValues(thresholds, classValues);
}
public void SetClassDistibutionCutPointThresholds() {
double[] classValues;
double[] thresholds;
var targetClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(ProblemData, EstimatedTrainingValues, targetClassValues, out classValues, out thresholds);
Model.SetThresholdsAndClassValues(thresholds, classValues);
}
protected override void OnModelChanged(EventArgs e) {
base.OnModelChanged(e);
SetAccuracyMaximizingThresholds();
}
protected override void OnProblemDataChanged(EventArgs e) {
base.OnProblemDataChanged(e);
SetAccuracyMaximizingThresholds();
}
protected virtual void OnModelThresholdsChanged(EventArgs e) {
RecalculateResults();
}
public IEnumerable EstimatedValues {
get { return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
}
public IEnumerable EstimatedTrainingValues {
get { return GetEstimatedValues(ProblemData.TrainingIndizes); }
}
public IEnumerable EstimatedTestValues {
get { return GetEstimatedValues(ProblemData.TestIndizes); }
}
public IEnumerable GetEstimatedValues(IEnumerable rows) {
return Model.GetEstimatedValues(ProblemData.Dataset, rows);
}
}
}