#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis { /// /// Represents a classification solution that uses a discriminant function and classification thresholds. /// [StorableClass] [Item("DiscriminantFunctionClassificationSolution", "Represents a classification solution that uses a discriminant function and classification thresholds.")] public class DiscriminantFunctionClassificationSolution : ClassificationSolution, IDiscriminantFunctionClassificationSolution { public new IDiscriminantFunctionClassificationModel Model { get { return (IDiscriminantFunctionClassificationModel)base.Model; } protected set { if (value != null && value != Model) { if (Model != null) { Model.ThresholdsChanged -= new EventHandler(Model_ThresholdsChanged); } value.ThresholdsChanged += new EventHandler(Model_ThresholdsChanged); base.Model = value; } } } [StorableConstructor] protected DiscriminantFunctionClassificationSolution(bool deserializing) : base(deserializing) { } protected DiscriminantFunctionClassificationSolution(DiscriminantFunctionClassificationSolution original, Cloner cloner) : base(original, cloner) { RegisterEventHandler(); } public DiscriminantFunctionClassificationSolution(IRegressionModel model, IClassificationProblemData problemData) : this(new DiscriminantFunctionClassificationModel(model), problemData) { } public DiscriminantFunctionClassificationSolution(IDiscriminantFunctionClassificationModel model, IClassificationProblemData problemData) : base(model, problemData) { RegisterEventHandler(); SetAccuracyMaximizingThresholds(); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { RegisterEventHandler(); } private void RegisterEventHandler() { Model.ThresholdsChanged += new EventHandler(Model_ThresholdsChanged); } private void Model_ThresholdsChanged(object sender, EventArgs e) { OnModelThresholdsChanged(e); } public void SetAccuracyMaximizingThresholds() { double[] classValues; double[] thresholds; var targetClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes); AccuracyMaximizationThresholdCalculator.CalculateThresholds(ProblemData, EstimatedTrainingValues, targetClassValues, out classValues, out thresholds); Model.SetThresholdsAndClassValues(thresholds, classValues); } public void SetClassDistibutionCutPointThresholds() { double[] classValues; double[] thresholds; var targetClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes); NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(ProblemData, EstimatedTrainingValues, targetClassValues, out classValues, out thresholds); Model.SetThresholdsAndClassValues(thresholds, classValues); } protected override void OnModelChanged(EventArgs e) { base.OnModelChanged(e); SetAccuracyMaximizingThresholds(); } protected override void OnProblemDataChanged(EventArgs e) { base.OnProblemDataChanged(e); SetAccuracyMaximizingThresholds(); } protected virtual void OnModelThresholdsChanged(EventArgs e) { RecalculateResults(); } public IEnumerable EstimatedValues { get { return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); } } public IEnumerable EstimatedTrainingValues { get { return GetEstimatedValues(ProblemData.TrainingIndizes); } } public IEnumerable EstimatedTestValues { get { return GetEstimatedValues(ProblemData.TestIndizes); } } public IEnumerable GetEstimatedValues(IEnumerable rows) { return Model.GetEstimatedValues(ProblemData.Dataset, rows); } } }