#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Operators; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Optimization; using System; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification { /// /// Represents a symbolic classification solution (model + data) and attributes of the solution like accuracy and complexity /// [StorableClass] [Item(Name = "SymbolicDiscriminantFunctionClassificationSolution", Description = "Represents a symbolic classification solution (model + data) and attributes of the solution like accuracy and complexity.")] public sealed class SymbolicDiscriminantFunctionClassificationSolution : DiscriminantFunctionClassificationSolution, ISymbolicClassificationSolution { private const string ModelLengthResultName = "ModelLength"; private const string ModelDepthResultName = "ModelDepth"; public new ISymbolicDiscriminantFunctionClassificationModel Model { get { return (ISymbolicDiscriminantFunctionClassificationModel)base.Model; } set { base.Model = value; } } ISymbolicClassificationModel ISymbolicClassificationSolution.Model { get { return Model; } } ISymbolicDataAnalysisModel ISymbolicDataAnalysisSolution.Model { get { return Model; } } public int ModelLength { get { return ((IntValue)this[ModelLengthResultName].Value).Value; } private set { ((IntValue)this[ModelLengthResultName].Value).Value = value; } } public int ModelDepth { get { return ((IntValue)this[ModelDepthResultName].Value).Value; } private set { ((IntValue)this[ModelDepthResultName].Value).Value = value; } } [StorableConstructor] private SymbolicDiscriminantFunctionClassificationSolution(bool deserializing) : base(deserializing) { } private SymbolicDiscriminantFunctionClassificationSolution(SymbolicDiscriminantFunctionClassificationSolution original, Cloner cloner) : base(original, cloner) { } public SymbolicDiscriminantFunctionClassificationSolution(ISymbolicDiscriminantFunctionClassificationModel model, IClassificationProblemData problemData) : base(model, problemData) { Add(new Result(ModelLengthResultName, "Length of the symbolic classification model.", new IntValue())); Add(new Result(ModelDepthResultName, "Depth of the symbolic classification model.", new IntValue())); RecalculateResults(); } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicDiscriminantFunctionClassificationSolution(this, cloner); } protected override void OnModelChanged(EventArgs e) { base.OnModelChanged(e); RecalculateResults(); } private new void RecalculateResults() { ModelLength = Model.SymbolicExpressionTree.Length; ModelDepth = Model.SymbolicExpressionTree.Depth; } public void ScaleModel() { var dataset = ProblemData.Dataset; var targetVariable = ProblemData.TargetVariable; var rows = ProblemData.TrainingIndizes; var estimatedValues = GetEstimatedValues(rows); var targetValues = dataset.GetEnumeratedVariableValues(targetVariable, rows); double alpha; double beta; OnlineLinearScalingParameterCalculator.Calculate(estimatedValues, targetValues, out alpha, out beta); ConstantTreeNode alphaTreeNode = null; ConstantTreeNode betaTreeNode = null; // check if model has been scaled previously by analyzing the structure of the tree var startNode = Model.SymbolicExpressionTree.Root.GetSubtree(0); if (startNode.GetSubtree(0).Symbol is Addition) { var addNode = startNode.GetSubtree(0); if (addNode.SubtreesCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication && addNode.GetSubtree(1).Symbol is Constant) { alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode; var mulNode = addNode.GetSubtree(0); if (mulNode.SubtreesCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) { betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode; } } } // if tree structure matches the structure necessary for linear scaling then reuse the existing tree nodes if (alphaTreeNode != null && betaTreeNode != null) { betaTreeNode.Value *= beta; alphaTreeNode.Value *= beta; alphaTreeNode.Value += alpha; } else { var mainBranch = startNode.GetSubtree(0); startNode.RemoveSubtree(0); var scaledMainBranch = MakeSum(MakeProduct(beta, mainBranch), alpha); startNode.AddSubtree(scaledMainBranch); } OnModelChanged(EventArgs.Empty); } private static ISymbolicExpressionTreeNode MakeSum(ISymbolicExpressionTreeNode treeNode, double alpha) { if (alpha.IsAlmost(0.0)) { return treeNode; } else { var node = (new Addition()).CreateTreeNode(); var alphaConst = MakeConstant(alpha); node.AddSubtree(treeNode); node.AddSubtree(alphaConst); return node; } } private static ISymbolicExpressionTreeNode MakeProduct(double beta, ISymbolicExpressionTreeNode treeNode) { if (beta.IsAlmost(1.0)) { return treeNode; } else { var node = (new Multiplication()).CreateTreeNode(); var betaConst = MakeConstant(beta); node.AddSubtree(treeNode); node.AddSubtree(betaConst); return node; } } private static ISymbolicExpressionTreeNode MakeConstant(double c) { var node = (ConstantTreeNode)(new Constant()).CreateTreeNode(); node.Value = c; return node; } } }