#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Optimization;
using System;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
///
/// Represents a symbolic classification solution (model + data) and attributes of the solution like accuracy and complexity
///
[StorableClass]
[Item(Name = "SymbolicDiscriminantFunctionClassificationSolution", Description = "Represents a symbolic classification solution (model + data) and attributes of the solution like accuracy and complexity.")]
public sealed class SymbolicDiscriminantFunctionClassificationSolution : DiscriminantFunctionClassificationSolution, ISymbolicClassificationSolution {
private const string ModelLengthResultName = "ModelLength";
private const string ModelDepthResultName = "ModelDepth";
public new ISymbolicDiscriminantFunctionClassificationModel Model {
get { return (ISymbolicDiscriminantFunctionClassificationModel)base.Model; }
set { base.Model = value; }
}
ISymbolicClassificationModel ISymbolicClassificationSolution.Model {
get { return Model; }
}
ISymbolicDataAnalysisModel ISymbolicDataAnalysisSolution.Model {
get { return Model; }
}
public int ModelLength {
get { return ((IntValue)this[ModelLengthResultName].Value).Value; }
private set { ((IntValue)this[ModelLengthResultName].Value).Value = value; }
}
public int ModelDepth {
get { return ((IntValue)this[ModelDepthResultName].Value).Value; }
private set { ((IntValue)this[ModelDepthResultName].Value).Value = value; }
}
[StorableConstructor]
private SymbolicDiscriminantFunctionClassificationSolution(bool deserializing) : base(deserializing) { }
private SymbolicDiscriminantFunctionClassificationSolution(SymbolicDiscriminantFunctionClassificationSolution original, Cloner cloner)
: base(original, cloner) {
}
public SymbolicDiscriminantFunctionClassificationSolution(ISymbolicDiscriminantFunctionClassificationModel model, IClassificationProblemData problemData)
: base(model, problemData) {
Add(new Result(ModelLengthResultName, "Length of the symbolic classification model.", new IntValue()));
Add(new Result(ModelDepthResultName, "Depth of the symbolic classification model.", new IntValue()));
RecalculateResults();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicDiscriminantFunctionClassificationSolution(this, cloner);
}
protected override void OnModelChanged(EventArgs e) {
base.OnModelChanged(e);
RecalculateResults();
}
private new void RecalculateResults() {
ModelLength = Model.SymbolicExpressionTree.Length;
ModelDepth = Model.SymbolicExpressionTree.Depth;
}
public void ScaleModel() {
var dataset = ProblemData.Dataset;
var targetVariable = ProblemData.TargetVariable;
var rows = ProblemData.TrainingIndizes;
var estimatedValues = GetEstimatedValues(rows);
var targetValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
double alpha;
double beta;
OnlineLinearScalingParameterCalculator.Calculate(estimatedValues, targetValues, out alpha, out beta);
ConstantTreeNode alphaTreeNode = null;
ConstantTreeNode betaTreeNode = null;
// check if model has been scaled previously by analyzing the structure of the tree
var startNode = Model.SymbolicExpressionTree.Root.GetSubtree(0);
if (startNode.GetSubtree(0).Symbol is Addition) {
var addNode = startNode.GetSubtree(0);
if (addNode.SubtreesCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication && addNode.GetSubtree(1).Symbol is Constant) {
alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode;
var mulNode = addNode.GetSubtree(0);
if (mulNode.SubtreesCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) {
betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode;
}
}
}
// if tree structure matches the structure necessary for linear scaling then reuse the existing tree nodes
if (alphaTreeNode != null && betaTreeNode != null) {
betaTreeNode.Value *= beta;
alphaTreeNode.Value *= beta;
alphaTreeNode.Value += alpha;
} else {
var mainBranch = startNode.GetSubtree(0);
startNode.RemoveSubtree(0);
var scaledMainBranch = MakeSum(MakeProduct(beta, mainBranch), alpha);
startNode.AddSubtree(scaledMainBranch);
}
OnModelChanged(EventArgs.Empty);
}
private static ISymbolicExpressionTreeNode MakeSum(ISymbolicExpressionTreeNode treeNode, double alpha) {
if (alpha.IsAlmost(0.0)) {
return treeNode;
} else {
var node = (new Addition()).CreateTreeNode();
var alphaConst = MakeConstant(alpha);
node.AddSubtree(treeNode);
node.AddSubtree(alphaConst);
return node;
}
}
private static ISymbolicExpressionTreeNode MakeProduct(double beta, ISymbolicExpressionTreeNode treeNode) {
if (beta.IsAlmost(1.0)) {
return treeNode;
} else {
var node = (new Multiplication()).CreateTreeNode();
var betaConst = MakeConstant(beta);
node.AddSubtree(treeNode);
node.AddSubtree(betaConst);
return node;
}
}
private static ISymbolicExpressionTreeNode MakeConstant(double c) {
var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
node.Value = c;
return node;
}
}
}