#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// k-Means clustering algorithm data analysis algorithm.
///
[Item("k-Means", "The k-Means clustering algorithm.")]
[Creatable("Data Analysis")]
[StorableClass]
public sealed class KMeansClustering : FixedDataAnalysisAlgorithm {
private const string KParameterName = "k";
private const string RestartsParameterName = "Restarts";
private const string KMeansSolutionResultName = "k-Means clustering solution";
#region parameter properties
public IValueParameter KParameter {
get { return (IValueParameter)Parameters[KParameterName]; }
}
public IValueParameter RestartsParameter {
get { return (IValueParameter)Parameters[RestartsParameterName]; }
}
#endregion
#region properties
public IntValue K {
get { return KParameter.Value; }
}
public IntValue Restarts {
get { return RestartsParameter.Value; }
}
#endregion
[StorableConstructor]
private KMeansClustering(bool deserializing) : base(deserializing) { }
private KMeansClustering(KMeansClustering original, Cloner cloner)
: base(original, cloner) {
}
public KMeansClustering()
: base() {
Parameters.Add(new ValueParameter(KParameterName, "The number of clusters.", new IntValue(3)));
Parameters.Add(new ValueParameter(RestartsParameterName, "The number of restarts.", new IntValue(0)));
Problem = new ClusteringProblem();
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new KMeansClustering(this, cloner);
}
#region k-Means clustering
protected override void Run() {
var solution = CreateKMeansSolution(Problem.ProblemData, K.Value, Restarts.Value);
Results.Add(new Result(KMeansSolutionResultName, "The linear regression solution.", solution));
}
public static KMeansClusteringSolution CreateKMeansSolution(IClusteringProblemData problemData, int k, int restarts) {
Dataset dataset = problemData.Dataset;
IEnumerable allowedInputVariables = problemData.AllowedInputVariables;
int start = problemData.TrainingPartition.Start;
int end = problemData.TrainingPartition.End;
IEnumerable rows = Enumerable.Range(start, end - start);
int info;
double[,] centers;
int[] xyc;
double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
alglib.kmeansgenerate(inputMatrix, inputMatrix.GetLength(0), inputMatrix.GetLength(1), k, restarts + 1, out info, out centers, out xyc);
if (info != 1) throw new ArgumentException("Error in calculation of k-Means clustering solution");
KMeansClusteringSolution solution = new KMeansClusteringSolution(new KMeansClusteringModel(centers, allowedInputVariables), problemData);
return solution;
}
#endregion
}
}