#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { /// /// An operator that analyzes the training best symbolic regression solution for multi objective symbolic regression problems. /// [Item("SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic regression solution for multi objective symbolic regression problems.")] [StorableClass] public sealed class SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer, ISymbolicDataAnalysisInterpreterOperator { private const string ProblemDataParameterName = "ProblemData"; private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicDataAnalysisTreeInterpreter"; private const string UpperEstimationLimitParameterName = "UpperEstimationLimit"; private const string LowerEstimationLimitParameterName = "LowerEstimationLimit"; private const string ApplyLinearScalingParameterName = "ApplyLinearScaling"; #region parameter properties public ILookupParameter ProblemDataParameter { get { return (ILookupParameter)Parameters[ProblemDataParameterName]; } } public ILookupParameter SymbolicDataAnalysisTreeInterpreterParameter { get { return (ILookupParameter)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; } } public IValueLookupParameter UpperEstimationLimitParameter { get { return (IValueLookupParameter)Parameters[UpperEstimationLimitParameterName]; } } public IValueLookupParameter LowerEstimationLimitParameter { get { return (IValueLookupParameter)Parameters[LowerEstimationLimitParameterName]; } } public IValueParameter ApplyLinearScalingParameter { get { return (IValueParameter)Parameters[ApplyLinearScalingParameterName]; } } #endregion #region properties public IRegressionProblemData ProblemData { get { return ProblemDataParameter.ActualValue; } } public ISymbolicDataAnalysisExpressionTreeInterpreter SymbolicDataAnalysisTreeInterpreter { get { return SymbolicDataAnalysisTreeInterpreterParameter.ActualValue; } } public DoubleValue UpperEstimationLimit { get { return UpperEstimationLimitParameter.ActualValue; } } public DoubleValue LowerEstimationLimit { get { return LowerEstimationLimitParameter.ActualValue; } } public BoolValue ApplyLinearScaling { get { return ApplyLinearScalingParameter.Value; } } #endregion [StorableConstructor] private SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer(bool deserializing) : base(deserializing) { } private SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer(SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { } public SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer() : base() { Parameters.Add(new LookupParameter(ProblemDataParameterName, "The problem data for the symbolic regression solution.")); Parameters.Add(new LookupParameter(SymbolicDataAnalysisTreeInterpreterParameterName, "The symbolic data analysis tree interpreter for the symbolic expression tree.")); Parameters.Add(new ValueLookupParameter(UpperEstimationLimitParameterName, "The upper limit for the estimated values produced by the symbolic regression model.")); Parameters.Add(new ValueLookupParameter(LowerEstimationLimitParameterName, "The lower limit for the estimated values produced by the symbolic regression model.")); Parameters.Add(new ValueParameter(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic regression solution should be linearly scaled.", new BoolValue(true))); } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer(this, cloner); } protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) { var model = new SymbolicRegressionModel(bestTree, SymbolicDataAnalysisTreeInterpreter, LowerEstimationLimit.Value, UpperEstimationLimit.Value); var solution = new SymbolicRegressionSolution(model, ProblemData); if (ApplyLinearScaling.Value) solution.ScaleModel(); return solution; } } }