#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers;
namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
[Item("Symbolic Regression Problem (single objective)", "Represents a single objective symbolic regression problem.")]
[StorableClass]
public sealed class SymbolicRegressionProblem : SymbolicRegressionProblemBase, ISingleObjectiveDataAnalysisProblem {
#region Parameter Properties
public ValueParameter MaximizationParameter {
get { return (ValueParameter)Parameters["Maximization"]; }
}
IParameter ISingleObjectiveHeuristicOptimizationProblem.MaximizationParameter {
get { return MaximizationParameter; }
}
public new ValueParameter EvaluatorParameter {
get { return (ValueParameter)Parameters["Evaluator"]; }
}
IParameter IHeuristicOptimizationProblem.EvaluatorParameter {
get { return EvaluatorParameter; }
}
public OptionalValueParameter BestKnownQualityParameter {
get { return (OptionalValueParameter)Parameters["BestKnownQuality"]; }
}
IParameter ISingleObjectiveHeuristicOptimizationProblem.BestKnownQualityParameter {
get { return BestKnownQualityParameter; }
}
#endregion
#region Properties
public new ISymbolicRegressionEvaluator Evaluator {
get { return EvaluatorParameter.Value; }
set { EvaluatorParameter.Value = value; }
}
ISingleObjectiveEvaluator ISingleObjectiveHeuristicOptimizationProblem.Evaluator {
get { return EvaluatorParameter.Value; }
}
IEvaluator IHeuristicOptimizationProblem.Evaluator {
get { return EvaluatorParameter.Value; }
}
public DoubleValue BestKnownQuality {
get { return BestKnownQualityParameter.Value; }
}
#endregion
[StorableConstructor]
private SymbolicRegressionProblem(bool deserializing) : base(deserializing) { }
private SymbolicRegressionProblem(SymbolicRegressionProblem original, Cloner cloner)
: base(original, cloner) {
RegisterParameterEvents();
RegisterParameterValueEvents();
}
public SymbolicRegressionProblem()
: base() {
var evaluator = new SymbolicRegressionPearsonsRSquaredEvaluator();
Parameters.Add(new ValueParameter("Maximization", "Set to false as the error of the regression model should be minimized.", (BoolValue)new BoolValue(true)));
Parameters.Add(new ValueParameter("Evaluator", "The operator which should be used to evaluate symbolic regression solutions.", evaluator));
Parameters.Add(new OptionalValueParameter("BestKnownQuality", "The minimal error value that reached by symbolic regression solutions for the problem."));
InitializeOperators();
ParameterizeEvaluator();
RegisterParameterEvents();
RegisterParameterValueEvents();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicRegressionProblem(this, cloner);
}
private void RegisterParameterValueEvents() {
EvaluatorParameter.ValueChanged += new EventHandler(EvaluatorParameter_ValueChanged);
}
private void RegisterParameterEvents() { }
#region event handling
protected override void OnDataAnalysisProblemChanged(EventArgs e) {
base.OnDataAnalysisProblemChanged(e);
BestKnownQualityParameter.Value = null;
// paritions could be changed
ParameterizeEvaluator();
ParameterizeAnalyzers();
}
protected override void OnSolutionParameterNameChanged(EventArgs e) {
base.OnSolutionParameterNameChanged(e);
ParameterizeEvaluator();
ParameterizeAnalyzers();
}
protected override void OnEvaluatorChanged(EventArgs e) {
base.OnEvaluatorChanged(e);
ParameterizeEvaluator();
ParameterizeAnalyzers();
ParameterizeProblem();
RaiseEvaluatorChanged(e);
}
#endregion
#region event handlers
private void EvaluatorParameter_ValueChanged(object sender, EventArgs e) {
OnEvaluatorChanged(e);
}
#endregion
#region Helpers
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserializationHook() {
// BackwardsCompatibility3.3
#region Backwards compatible code (remove with 3.4)
if (Operators == null || Operators.Count() == 0) InitializeOperators();
#endregion
RegisterParameterEvents();
RegisterParameterValueEvents();
}
private void InitializeOperators() {
AddOperator(new FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer());
AddOperator(new SymbolicRegressionOverfittingAnalyzer());
AddOperator(new TrainingBestScaledSymbolicRegressionSolutionAnalyzer());
ParameterizeAnalyzers();
}
private void ParameterizeEvaluator() {
Evaluator.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
Evaluator.RegressionProblemDataParameter.ActualName = DataAnalysisProblemDataParameter.Name;
Evaluator.SamplesStartParameter.Value = TrainingSamplesStart;
Evaluator.SamplesEndParameter.Value = TrainingSamplesEnd;
}
private void ParameterizeAnalyzers() {
foreach (var analyzer in Analyzers) {
analyzer.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
var validationSolutionAnalyzer = analyzer as SymbolicRegressionValidationAnalyzer;
if (validationSolutionAnalyzer != null) {
validationSolutionAnalyzer.ProblemDataParameter.ActualName = DataAnalysisProblemDataParameter.Name;
validationSolutionAnalyzer.UpperEstimationLimitParameter.ActualName = UpperEstimationLimitParameter.Name;
validationSolutionAnalyzer.LowerEstimationLimitParameter.ActualName = LowerEstimationLimitParameter.Name;
validationSolutionAnalyzer.SymbolicExpressionTreeInterpreterParameter.ActualName = SymbolicExpressionTreeInterpreterParameter.Name;
validationSolutionAnalyzer.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
validationSolutionAnalyzer.ValidationSamplesStartParameter.Value = ValidationSamplesStart;
validationSolutionAnalyzer.ValidationSamplesEndParameter.Value = ValidationSamplesEnd;
}
var fixedBestValidationSolutionAnalyzer = analyzer as FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer;
if (fixedBestValidationSolutionAnalyzer != null) {
fixedBestValidationSolutionAnalyzer.BestKnownQualityParameter.ActualName = BestKnownQualityParameter.Name;
}
var bestValidationSolutionAnalyzer = analyzer as ValidationBestScaledSymbolicRegressionSolutionAnalyzer;
if (bestValidationSolutionAnalyzer != null) {
bestValidationSolutionAnalyzer.ProblemDataParameter.ActualName = DataAnalysisProblemDataParameter.Name;
bestValidationSolutionAnalyzer.UpperEstimationLimitParameter.ActualName = UpperEstimationLimitParameter.Name;
bestValidationSolutionAnalyzer.LowerEstimationLimitParameter.ActualName = LowerEstimationLimitParameter.Name;
bestValidationSolutionAnalyzer.SymbolicExpressionTreeInterpreterParameter.ActualName = SymbolicExpressionTreeInterpreterParameter.Name;
bestValidationSolutionAnalyzer.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
bestValidationSolutionAnalyzer.ValidationSamplesStartParameter.Value = ValidationSamplesStart;
bestValidationSolutionAnalyzer.ValidationSamplesEndParameter.Value = ValidationSamplesEnd;
bestValidationSolutionAnalyzer.BestKnownQualityParameter.ActualName = BestKnownQualityParameter.Name;
bestValidationSolutionAnalyzer.QualityParameter.ActualName = Evaluator.QualityParameter.ActualName;
}
}
}
private void ParameterizeProblem() {
if (MaximizationParameter.Value != null) {
MaximizationParameter.Value.Value = Evaluator.Maximization;
} else {
MaximizationParameter.Value = new BoolValue(Evaluator.Maximization);
}
}
#endregion
}
}