#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Diagnostics;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Random;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding_3._4.Tests {
[TestClass]
public class SubtreeCrossoverTest {
private const int POPULATION_SIZE = 1000;
private TestContext testContextInstance;
///
///Gets or sets the test context which provides
///information about and functionality for the current test run.
///
public TestContext TestContext {
get {
return testContextInstance;
}
set {
testContextInstance = value;
}
}
[TestMethod()]
public void SubtreeCrossoverDistributionsTest() {
int generations = 5;
var trees = new List();
var grammar = Grammars.CreateArithmeticAndAdfGrammar();
var random = new MersenneTwister(31415);
List crossoverTrees;
double msPerCrossoverEvent;
for (int i = 0; i < POPULATION_SIZE; i++) {
trees.Add(ProbabilisticTreeCreator.Create(random, grammar, 100, 10, 3, 3));
}
Stopwatch stopwatch = new Stopwatch();
stopwatch.Start();
for (int gCount = 0; gCount < generations; gCount++) {
var newPopulation = new List();
for (int i = 0; i < POPULATION_SIZE; i++) {
var par0 = (SymbolicExpressionTree)trees.SelectRandom(random).Clone();
var par1 = (SymbolicExpressionTree)trees.SelectRandom(random).Clone();
newPopulation.Add(SubtreeCrossover.Cross(random, par0, par1, 0.9, 100, 10));
}
crossoverTrees = newPopulation;
}
stopwatch.Stop();
foreach (var tree in trees)
Util.IsValid(tree);
msPerCrossoverEvent = stopwatch.ElapsedMilliseconds / (double)POPULATION_SIZE / (double)generations;
Console.WriteLine("SubtreeCrossover: " + Environment.NewLine +
msPerCrossoverEvent + " ms per crossover event (~" + Math.Round(1000.0 / (msPerCrossoverEvent)) + "crossovers / s)" + Environment.NewLine +
Util.GetSizeDistributionString(trees, 105, 5) + Environment.NewLine +
Util.GetFunctionDistributionString(trees) + Environment.NewLine +
Util.GetNumberOfSubTreesDistributionString(trees) + Environment.NewLine +
Util.GetTerminalDistributionString(trees) + Environment.NewLine
);
Assert.IsTrue(Math.Round(1000.0 / (msPerCrossoverEvent)) > 2000); // must achieve more than 2000 x-overs/s
}
}
}