#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Parameters; namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding { /// /// Manipulates a symbolic expression by adding one new function-defining branch containing /// a proportion of a preexisting branch and by creating a reference to the new branch. /// As described in Koza, Bennett, Andre, Keane, Genetic Programming III - Darwinian Invention and Problem Solving, 1999, pp. 97 /// [Item("SubroutineCreater", "Manipulates a symbolic expression by adding one new function-defining branch containing a proportion of a preexisting branch and by creating a reference to the new branch. As described in Koza, Bennett, Andre, Keane, Genetic Programming III - Darwinian Invention and Problem Solving, 1999, pp. 97")] [StorableClass] public sealed class SubroutineCreater : SymbolicExpressionTreeArchitectureManipulator, ISymbolicExpressionTreeSizeConstraintOperator { private const double ARGUMENT_CUTOFF_PROBABILITY = 0.05; private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength"; private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth"; #region Parameter Properties public IValueLookupParameter MaximumSymbolicExpressionTreeLengthParameter { get { return (IValueLookupParameter)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; } } public IValueLookupParameter MaximumSymbolicExpressionTreeDepthParameter { get { return (IValueLookupParameter)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; } } #endregion #region Properties public IntValue MaximumSymbolicExpressionTreeLength { get { return MaximumSymbolicExpressionTreeLengthParameter.ActualValue; } } public IntValue MaximumSymbolicExpressionTreeDepth { get { return MaximumSymbolicExpressionTreeDepthParameter.ActualValue; } } #endregion [StorableConstructor] private SubroutineCreater(bool deserializing) : base(deserializing) { } private SubroutineCreater(SubroutineCreater original, Cloner cloner) : base(original, cloner) { } public SubroutineCreater() : base() { Parameters.Add(new ValueLookupParameter(MaximumSymbolicExpressionTreeLengthParameterName, "The maximal length (number of nodes) of the symbolic expression tree.")); Parameters.Add(new ValueLookupParameter(MaximumSymbolicExpressionTreeDepthParameterName, "The maximal depth of the symbolic expression tree (a tree with one node has depth = 0).")); } public override IDeepCloneable Clone(Cloner cloner) { return new SubroutineCreater(this, cloner); } public override sealed void ModifyArchitecture( IRandom random, ISymbolicExpressionTree symbolicExpressionTree, IntValue maxFunctionDefinitions, IntValue maxFunctionArguments) { CreateSubroutine(random, symbolicExpressionTree, MaximumSymbolicExpressionTreeLength.Value, MaximumSymbolicExpressionTreeDepth.Value, maxFunctionDefinitions.Value, maxFunctionArguments.Value); } public static bool CreateSubroutine( IRandom random, ISymbolicExpressionTree symbolicExpressionTree, int maxTreeLength, int maxTreeDepth, int maxFunctionDefinitions, int maxFunctionArguments) { var functionDefiningBranches = symbolicExpressionTree.IterateNodesPrefix().OfType(); if (functionDefiningBranches.Count() >= maxFunctionDefinitions) // allowed maximum number of ADF reached => abort return false; if (symbolicExpressionTree.Length + 4 > maxTreeLength) // defining a new function causes an length increase by 4 nodes (max) if the max tree length is reached => abort return false; string formatString = new StringBuilder().Append('0', (int)Math.Log10(maxFunctionDefinitions * 10 - 1)).ToString(); // >= 100 functions => ### var allowedFunctionNames = from index in Enumerable.Range(0, maxFunctionDefinitions) select "ADF" + index.ToString(formatString); // select a random body (either the result producing branch or an ADF branch) var bodies = from node in symbolicExpressionTree.Root.SubTrees select new { Tree = node, Length = node.GetLength() }; var totalNumberOfBodyNodes = bodies.Select(x => x.Length).Sum(); int r = random.Next(totalNumberOfBodyNodes); int aggregatedNumberOfBodyNodes = 0; ISymbolicExpressionTreeNode selectedBody = null; foreach (var body in bodies) { aggregatedNumberOfBodyNodes += body.Length; if (aggregatedNumberOfBodyNodes > r) selectedBody = body.Tree; } // sanity check if (selectedBody == null) throw new InvalidOperationException(); // select a random cut point in the selected branch var allCutPoints = from parent in selectedBody.IterateNodesPrefix() from subtree in parent.SubTrees select new { Parent = parent, ReplacedBranchIndex = parent.IndexOfSubTree(subtree), ReplacedBranch = subtree }; if (allCutPoints.Count() == 0) // no cut points => abort return false; string newFunctionName = allowedFunctionNames.Except(functionDefiningBranches.Select(x => x.FunctionName)).First(); var selectedCutPoint = allCutPoints.SelectRandom(random); // select random branches as argument cut-off points (replaced by argument terminal nodes in the function) List argumentBranches = SelectRandomArgumentBranches(selectedCutPoint.ReplacedBranch, random, ARGUMENT_CUTOFF_PROBABILITY, maxFunctionArguments); ISymbolicExpressionTreeNode functionBody = selectedCutPoint.ReplacedBranch; // disconnect the function body from the tree selectedCutPoint.Parent.RemoveSubTree(selectedCutPoint.ReplacedBranchIndex); // disconnect the argument branches from the function functionBody = DisconnectBranches(functionBody, argumentBranches); // insert a function invocation symbol instead var invokeNode = (InvokeFunctionTreeNode)(new InvokeFunction(newFunctionName)).CreateTreeNode(); selectedCutPoint.Parent.InsertSubTree(selectedCutPoint.ReplacedBranchIndex, invokeNode); // add the branches selected as argument as subtrees of the function invocation node foreach (var argumentBranch in argumentBranches) invokeNode.AddSubTree(argumentBranch); // insert a new function defining branch var defunNode = (DefunTreeNode)(new Defun()).CreateTreeNode(); defunNode.FunctionName = newFunctionName; defunNode.AddSubTree(functionBody); symbolicExpressionTree.Root.AddSubTree(defunNode); // the grammar in the newly defined function is a clone of the grammar of the originating branch defunNode.SetGrammar((ISymbolicExpressionTreeGrammar)selectedBody.Grammar.Clone()); // remove all argument symbols from grammar var oldArgumentSymbols = defunNode.Grammar.Symbols.OfType().ToList(); foreach (var oldArgSymb in oldArgumentSymbols) defunNode.Grammar.RemoveSymbol(oldArgSymb); // find unique argument indexes and matching symbols in the function defining branch var newArgumentIndexes = (from node in defunNode.IterateNodesPrefix().OfType() select node.Symbol.ArgumentIndex).Distinct(); // add argument symbols to grammar of function defining branch GrammarModifier.AddDynamicArguments(defunNode.Grammar, defunNode.Symbol, newArgumentIndexes); defunNode.NumberOfArguments = newArgumentIndexes.Count(); if (defunNode.NumberOfArguments != argumentBranches.Count) throw new InvalidOperationException(); // add invoke symbol for newly defined function to the original branch var allowedParents = from symb in selectedBody.Grammar.Symbols where !(symb is ProgramRootSymbol) select symb; var allowedChildren = from symb in selectedBody.Grammar.Symbols where selectedBody.Grammar.IsAllowedChild(selectedBody.Symbol, symb, 0) select symb; GrammarModifier.AddDynamicSymbol(selectedBody.Grammar, selectedBody.Symbol, defunNode.FunctionName, defunNode.NumberOfArguments); // when the new function body was taken from another function definition // add invoke symbol for newly defined function to all branches that are allowed to invoke the original branch if (selectedBody.Symbol is Defun) { var originalFunctionDefinition = selectedBody as DefunTreeNode; foreach (var subtree in symbolicExpressionTree.Root.SubTrees) { var originalBranchInvokeSymbol = (from symb in subtree.Grammar.Symbols.OfType() where symb.FunctionName == originalFunctionDefinition.FunctionName select symb).SingleOrDefault(); // when the original branch can be invoked from the subtree then also allow invocation of the function if (originalBranchInvokeSymbol != null) { allowedParents = from symb in subtree.Grammar.Symbols where !(symb is ProgramRootSymbol) select symb; allowedChildren = from symb in subtree.Grammar.Symbols where subtree.Grammar.IsAllowedChild(subtree.Symbol, symb, 0) select symb; GrammarModifier.AddDynamicSymbol(subtree.Grammar, subtree.Symbol, defunNode.FunctionName, defunNode.NumberOfArguments); } } } return true; } private static ISymbolicExpressionTreeNode DisconnectBranches(ISymbolicExpressionTreeNode node, List argumentBranches) { if (argumentBranches.Contains(node)) { var argumentIndex = argumentBranches.IndexOf(node); var argSymbol = new Argument(argumentIndex); return argSymbol.CreateTreeNode(); } // remove the subtrees so that we can clone only the root node List subtrees = new List(node.SubTrees); while (node.SubTrees.Count() > 0) node.RemoveSubTree(0); // recursively apply function for subtrees or append a argument terminal node foreach (var subtree in subtrees) { node.AddSubTree(DisconnectBranches(subtree, argumentBranches)); } return node; } private static List SelectRandomArgumentBranches(ISymbolicExpressionTreeNode selectedRoot, IRandom random, double cutProbability, int maxArguments) { // breadth first determination of argument cut-off points // we must make sure that we cut off all original argument nodes and that the number of new argument is smaller than the limit List argumentBranches = new List(); if (selectedRoot is ArgumentTreeNode) { argumentBranches.Add(selectedRoot); return argumentBranches; } else { // get the number of argument nodes (which must be cut-off) in the sub-trees var numberOfArgumentsInSubtrees = (from subtree in selectedRoot.SubTrees let nArgumentsInTree = subtree.IterateNodesPrefix().OfType().Count() select nArgumentsInTree).ToList(); // determine the minimal number of new argument nodes for each sub-tree var minNewArgumentsForSubtrees = numberOfArgumentsInSubtrees.Select(x => x > 0 ? 1 : 0).ToList(); if (minNewArgumentsForSubtrees.Sum() > maxArguments) { argumentBranches.Add(selectedRoot); return argumentBranches; } // cut-off in the sub-trees in random order var randomIndexes = (from index in Enumerable.Range(0, selectedRoot.SubTrees.Count()) select new { Index = index, OrderValue = random.NextDouble() }).OrderBy(x => x.OrderValue).Select(x => x.Index); foreach (var subtreeIndex in randomIndexes) { var subtree = selectedRoot.GetSubTree(subtreeIndex); minNewArgumentsForSubtrees[subtreeIndex] = 0; // => cut-off at 0..n points somewhere in the current sub-tree // determine the maximum number of new arguments that should be created in the branch // as the maximum for the whole branch minus already added arguments minus minimal number of arguments still left int maxArgumentsFromBranch = maxArguments - argumentBranches.Count - minNewArgumentsForSubtrees.Sum(); // when no argument is allowed from the current branch then we have to include the whole branch into the function // otherwise: choose randomly wether to cut off immediately or wether to extend the function body into the branch if (maxArgumentsFromBranch == 0) { // don't cut at all => the whole sub-tree branch is included in the function body // (we already checked ahead of time that there are no arguments left over in the subtree) } else if (random.NextDouble() >= cutProbability) { argumentBranches.AddRange(SelectRandomArgumentBranches(subtree, random, cutProbability, maxArgumentsFromBranch)); } else { // cut-off at current sub-tree argumentBranches.Add(subtree); } } return argumentBranches; } } } }