#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.IntegerVectorEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Algorithms.ParticleSwarmOptimization {
[Item("Multi PSO Topology Initializer/Updater", "Splits swarm into swarmsize / (nrOfConnections + 1) non-overlapping sub-swarms. Swarms are re-grouped every regroupingPeriod iteration. The operator is implemented as described in Liang, J.J. and Suganthan, P.N 2005. Dynamic multi-swarm particle swarm optimizer. IEEE Swarm Intelligence Symposium, pp. 124-129.")]
[StorableClass]
public sealed class MultiPSOTopologyUpdater : SingleSuccessorOperator, ITopologyUpdater, ITopologyInitializer {
public override bool CanChangeName {
get { return false; }
}
#region Parameters
public ILookupParameter RandomParameter {
get { return (ILookupParameter)Parameters["Random"]; }
}
public IValueLookupParameter NrOfConnectionsParameter {
get { return (IValueLookupParameter)Parameters["NrOfConnections"]; }
}
public ILookupParameter SwarmSizeParameter {
get { return (ILookupParameter)Parameters["SwarmSize"]; }
}
public IScopeTreeLookupParameter NeighborsParameter {
get { return (IScopeTreeLookupParameter)Parameters["Neighbors"]; }
}
public ILookupParameter CurrentIterationParameter {
get { return (ILookupParameter)Parameters["CurrentIteration"]; }
}
public IValueLookupParameter RegroupingPeriodParameter {
get { return (IValueLookupParameter)Parameters["RegroupingPeriod"]; }
}
#endregion
#region Parameter Values
private IRandom Random {
get { return RandomParameter.ActualValue; }
}
private int NrOfConnections {
get { return NrOfConnectionsParameter.ActualValue.Value; }
}
private int SwarmSize {
get { return SwarmSizeParameter.ActualValue.Value; }
}
private ItemArray Neighbors {
get { return NeighborsParameter.ActualValue; }
set { NeighborsParameter.ActualValue = value; }
}
private int CurrentIteration {
get { return CurrentIterationParameter.ActualValue.Value; }
}
private int RegroupingPeriod {
get { return RegroupingPeriodParameter.ActualValue.Value; }
}
#endregion
[StorableConstructor]
private MultiPSOTopologyUpdater(bool deserializing) : base(deserializing) { }
private MultiPSOTopologyUpdater(MultiPSOTopologyUpdater original, Cloner cloner) : base(original, cloner) { }
public MultiPSOTopologyUpdater()
: base() {
Parameters.Add(new LookupParameter("Random", "A random number generator."));
Parameters.Add(new ValueLookupParameter("NrOfConnections", "Nr of connected neighbors.", new IntValue(3)));
Parameters.Add(new LookupParameter("SwarmSize", "Number of particles in the swarm."));
Parameters.Add(new ScopeTreeLookupParameter("Neighbors", "The list of neighbors for each particle."));
Parameters.Add(new LookupParameter("CurrentIteration", "The current iteration of the algorithm."));
Parameters.Add(new ValueLookupParameter("RegroupingPeriod", "Update interval (=iterations) for regrouping of neighborhoods.", new IntValue(5)));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new MultiPSOTopologyUpdater(this, cloner);
}
// Splits the swarm into non-overlapping sub swarms
public override IOperation Apply() {
if (CurrentIteration % RegroupingPeriod == 0) {
ItemArray neighbors = new ItemArray(SwarmSize);
Dictionary> neighborsPerParticle = new Dictionary>();
for (int i = 0; i < SwarmSize; i++) {
neighborsPerParticle.Add(i, new List());
}
// partition swarm into groups
Dictionary> groups = new Dictionary>();
int groupId = 0;
var numbers = Enumerable.Range(0, SwarmSize).ToList();
for (int i = 0; i < SwarmSize; i++) {
int nextParticle = numbers[Random.Next(0, numbers.Count)];
if (!groups.ContainsKey(groupId)) {
groups.Add(groupId, new List());
}
groups[groupId].Add(nextParticle);
if (groups[groupId].Count - 1 == NrOfConnections) {
groupId++;
}
numbers.Remove(nextParticle);
}
// add neighbors to each particle
foreach (List group in groups.Values) {
foreach (int sib1 in group) {
foreach (int sib2 in group) {
if (sib1 != sib2 && !neighborsPerParticle[sib1].Contains(sib2)) {
neighborsPerParticle[sib1].Add(sib2);
}
}
}
}
for (int particle = 0; particle < neighborsPerParticle.Count; particle++) {
neighbors[particle] = new IntegerVector(neighborsPerParticle[particle].ToArray());
}
Neighbors = neighbors;
}
return base.Apply();
}
}
}