#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Problems.DataAnalysis.Evaluators; using HeuristicLab.Problems.DataAnalysis.Regression.LinearRegression; using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic; using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers; using HeuristicLab.Problems.DataAnalysis.Symbolic; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// Linear regression data analysis algorithm. /// [Item("Linear Regression", "Linear regression data analysis algorithm.")] [StorableClass] public sealed class LinearRegression : EngineAlgorithm, IStorableContent { private const string TrainingSamplesStartParameterName = "Training start"; private const string TrainingSamplesEndParameterName = "Training end"; private const string LinearRegressionModelParameterName = "LinearRegressionModel"; private const string ModelInterpreterParameterName = "Model interpreter"; public string Filename { get; set; } #region Problem Properties public override Type ProblemType { get { return typeof(DataAnalysisProblem); } } public new DataAnalysisProblem Problem { get { return (DataAnalysisProblem)base.Problem; } set { base.Problem = value; } } #endregion #region parameter properties public IValueParameter TrainingSamplesStartParameter { get { return (IValueParameter)Parameters[TrainingSamplesStartParameterName]; } } public IValueParameter TrainingSamplesEndParameter { get { return (IValueParameter)Parameters[TrainingSamplesEndParameterName]; } } public IValueParameter ModelInterpreterParameter { get { return (IValueParameter)Parameters[ModelInterpreterParameterName]; } } #endregion [Storable] private LinearRegressionSolutionCreator solutionCreator; [Storable] private SimpleSymbolicRegressionEvaluator evaluator; [Storable] private SimpleMSEEvaluator mseEvaluator; [Storable] private BestSymbolicRegressionSolutionAnalyzer analyzer; public LinearRegression() : base() { Parameters.Add(new ValueParameter(TrainingSamplesStartParameterName, "The first index of the data set partition to use for training.")); Parameters.Add(new ValueParameter(TrainingSamplesEndParameterName, "The last index of the data set partition to use for training.")); Parameters.Add(new ValueParameter(ModelInterpreterParameterName, "The interpreter to use for evaluation of the model.", new SimpleArithmeticExpressionInterpreter())); solutionCreator = new LinearRegressionSolutionCreator(); evaluator = new SimpleSymbolicRegressionEvaluator(); mseEvaluator = new SimpleMSEEvaluator(); analyzer = new BestSymbolicRegressionSolutionAnalyzer(); OperatorGraph.InitialOperator = solutionCreator; solutionCreator.Successor = evaluator; evaluator.Successor = mseEvaluator; mseEvaluator.Successor = analyzer; Initialize(); } [StorableConstructor] private LinearRegression(bool deserializing) : base(deserializing) { } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { Initialize(); } private LinearRegression(LinearRegression original, Cloner cloner) : base(original, cloner) { solutionCreator = cloner.Clone(original.solutionCreator); evaluator = cloner.Clone(original.evaluator); mseEvaluator = cloner.Clone(original.mseEvaluator); analyzer = cloner.Clone(original.analyzer); Initialize(); } public override IDeepCloneable Clone(Cloner cloner) { return new LinearRegression(this, cloner); } public override void Prepare() { if (Problem != null) base.Prepare(); } protected override void Problem_Reset(object sender, EventArgs e) { UpdateAlgorithmParameterValues(); base.Problem_Reset(sender, e); } #region Events protected override void OnProblemChanged() { solutionCreator.DataAnalysisProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name; evaluator.RegressionProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name; analyzer.ProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name; UpdateAlgorithmParameterValues(); Problem.Reset += new EventHandler(Problem_Reset); base.OnProblemChanged(); } #endregion #region Helpers private void Initialize() { solutionCreator.SamplesStartParameter.ActualName = TrainingSamplesStartParameter.Name; solutionCreator.SamplesEndParameter.ActualName = TrainingSamplesEndParameter.Name; solutionCreator.SymbolicExpressionTreeParameter.ActualName = LinearRegressionModelParameterName; evaluator.SymbolicExpressionTreeParameter.ActualName = solutionCreator.SymbolicExpressionTreeParameter.ActualName; evaluator.SymbolicExpressionTreeInterpreterParameter.ActualName = ModelInterpreterParameter.Name; evaluator.ValuesParameter.ActualName = "Training values"; evaluator.SamplesStartParameter.ActualName = TrainingSamplesStartParameterName; evaluator.SamplesEndParameter.ActualName = TrainingSamplesEndParameterName; mseEvaluator.ValuesParameter.ActualName = "Training values"; mseEvaluator.MeanSquaredErrorParameter.ActualName = "Training MSE"; analyzer.SymbolicExpressionTreeParameter.ActualName = solutionCreator.SymbolicExpressionTreeParameter.ActualName; analyzer.SymbolicExpressionTreeParameter.Depth = 0; analyzer.QualityParameter.ActualName = mseEvaluator.MeanSquaredErrorParameter.ActualName; analyzer.QualityParameter.Depth = 0; analyzer.SymbolicExpressionTreeInterpreterParameter.ActualName = ModelInterpreterParameter.Name; if (Problem != null) { solutionCreator.DataAnalysisProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name; evaluator.RegressionProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name; analyzer.ProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name; Problem.Reset += new EventHandler(Problem_Reset); } } private void UpdateAlgorithmParameterValues() { TrainingSamplesStartParameter.ActualValue = Problem.DataAnalysisProblemData.TrainingSamplesStart; TrainingSamplesEndParameter.ActualValue = Problem.DataAnalysisProblemData.TrainingSamplesEnd; //var targetValues = // Problem.DataAnalysisProblemData.Dataset.GetVariableValues(Problem.DataAnalysisProblemData.TargetVariable.Value, // TrainingSamplesStartParameter.Value.Value, TrainingSamplesEndParameter.Value.Value); //double range = targetValues.Max() - targetValues.Min(); //double lowerEstimationLimit = targetValues.Average() - 10.0 * range; //double upperEstimationLimit = targetValues.Average() + 10.0 * range; //evaluator.LowerEstimationLimitParameter.Value = new DoubleValue(lowerEstimationLimit); //evaluator.UpperEstimationLimitParameter.Value = new DoubleValue(upperEstimationLimit); //analyzer.LowerEstimationLimitParameter.Value = new DoubleValue(lowerEstimationLimit); //analyzer.UpperEstimationLimitParameter.Value = new DoubleValue(upperEstimationLimit); } #endregion } }