1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Threading;
|
---|
25 | using System.Threading.Tasks;
|
---|
26 | using HeuristicLab.Analysis;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Optimization.Model2;
|
---|
32 | using HeuristicLab.Parameters;
|
---|
33 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
34 | using HeuristicLab.PluginInfrastructure;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Algorithms.GeneticAlgorithm.Model2 {
|
---|
37 | /// <summary>
|
---|
38 | /// A genetic algorithm.
|
---|
39 | /// </summary>
|
---|
40 | [Item("Genetic Algorithm (GA) v2", "A genetic algorithm.")]
|
---|
41 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 100)]
|
---|
42 | [StorableClass]
|
---|
43 | public sealed class GeneticAlgorithm : StochasticAlgorithm<PopulationContext<SolutionScope>> {
|
---|
44 | public override bool SupportsPause {
|
---|
45 | get { return true; }
|
---|
46 | }
|
---|
47 |
|
---|
48 | #region Problem Properties
|
---|
49 | public override Type ProblemType {
|
---|
50 | get { return typeof(ISingleObjectiveHeuristicOptimizationProblem); }
|
---|
51 | }
|
---|
52 | public new ISingleObjectiveHeuristicOptimizationProblem Problem {
|
---|
53 | get { return (ISingleObjectiveHeuristicOptimizationProblem)base.Problem; }
|
---|
54 | set { base.Problem = value; }
|
---|
55 | }
|
---|
56 | #endregion
|
---|
57 |
|
---|
58 | #region Parameter Properties
|
---|
59 | private FixedValueParameter<IntValue> PopulationSizeParameter {
|
---|
60 | get { return (FixedValueParameter<IntValue>)Parameters["PopulationSize"]; }
|
---|
61 | }
|
---|
62 | public IConstrainedValueParameter<ISelector> SelectorParameter {
|
---|
63 | get { return (IConstrainedValueParameter<ISelector>)Parameters["Selector"]; }
|
---|
64 | }
|
---|
65 | public IConstrainedValueParameter<ICrossover> CrossoverParameter {
|
---|
66 | get { return (IConstrainedValueParameter<ICrossover>)Parameters["Crossover"]; }
|
---|
67 | }
|
---|
68 | private FixedValueParameter<PercentValue> MutationProbabilityParameter {
|
---|
69 | get { return (FixedValueParameter<PercentValue>)Parameters["MutationProbability"]; }
|
---|
70 | }
|
---|
71 | public IConstrainedValueParameter<IManipulator> MutatorParameter {
|
---|
72 | get { return (IConstrainedValueParameter<IManipulator>)Parameters["Mutator"]; }
|
---|
73 | }
|
---|
74 | private FixedValueParameter<IntValue> ElitesParameter {
|
---|
75 | get { return (FixedValueParameter<IntValue>)Parameters["Elites"]; }
|
---|
76 | }
|
---|
77 | private IFixedValueParameter<BoolValue> ReevaluateElitesParameter {
|
---|
78 | get { return (IFixedValueParameter<BoolValue>)Parameters["ReevaluateElites"]; }
|
---|
79 | }
|
---|
80 | #endregion
|
---|
81 |
|
---|
82 | #region Properties
|
---|
83 | public int PopulationSize {
|
---|
84 | get { return PopulationSizeParameter.Value.Value; }
|
---|
85 | set { PopulationSizeParameter.Value.Value = value; }
|
---|
86 | }
|
---|
87 | public ISelector Selector {
|
---|
88 | get { return SelectorParameter.Value; }
|
---|
89 | set { SelectorParameter.Value = value; }
|
---|
90 | }
|
---|
91 | public ICrossover Crossover {
|
---|
92 | get { return CrossoverParameter.Value; }
|
---|
93 | set { CrossoverParameter.Value = value; }
|
---|
94 | }
|
---|
95 | public double MutationProbability {
|
---|
96 | get { return MutationProbabilityParameter.Value.Value; }
|
---|
97 | set { MutationProbabilityParameter.Value.Value = value; }
|
---|
98 | }
|
---|
99 | public IManipulator Mutator {
|
---|
100 | get { return MutatorParameter.Value; }
|
---|
101 | set { MutatorParameter.Value = value; }
|
---|
102 | }
|
---|
103 | public int Elites {
|
---|
104 | get { return ElitesParameter.Value.Value; }
|
---|
105 | set { ElitesParameter.Value.Value = value; }
|
---|
106 | }
|
---|
107 | public bool ReevaluteElites {
|
---|
108 | get { return ReevaluateElitesParameter.Value.Value; }
|
---|
109 | set { ReevaluateElitesParameter.Value.Value = value; }
|
---|
110 | }
|
---|
111 |
|
---|
112 | [Storable]
|
---|
113 | private BestAverageWorstQualityAnalyzer qualityAnalyzer;
|
---|
114 | #endregion
|
---|
115 |
|
---|
116 | public GeneticAlgorithm()
|
---|
117 | : base() {
|
---|
118 | Parameters.Add(new FixedValueParameter<IntValue>("PopulationSize", "The size of the population of solutions.", new IntValue(100)));
|
---|
119 | Parameters.Add(new ConstrainedValueParameter<ISelector>("Selector", "The operator used to select solutions for reproduction."));
|
---|
120 | Parameters.Add(new ConstrainedValueParameter<ICrossover>("Crossover", "The operator used to cross solutions."));
|
---|
121 | Parameters.Add(new FixedValueParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution.", new PercentValue(0.05)));
|
---|
122 | Parameters.Add(new ConstrainedValueParameter<IManipulator>("Mutator", "The operator used to mutate solutions."));
|
---|
123 | Parameters.Add(new FixedValueParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation.", new IntValue(1)));
|
---|
124 | Parameters.Add(new FixedValueParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", new BoolValue(false)) { Hidden = true });
|
---|
125 |
|
---|
126 | Analyzer = new MultiAnalyzer();
|
---|
127 |
|
---|
128 | foreach (ISelector selector in ApplicationManager.Manager.GetInstances<ISelector>().Where(x => !(x is IMultiObjectiveSelector)).OrderBy(x => x.Name))
|
---|
129 | SelectorParameter.ValidValues.Add(selector);
|
---|
130 | ISelector proportionalSelector = SelectorParameter.ValidValues.FirstOrDefault(x => x.GetType().Name.Equals("ProportionalSelector"));
|
---|
131 | if (proportionalSelector != null) SelectorParameter.Value = proportionalSelector;
|
---|
132 | ParameterizeSelectors();
|
---|
133 |
|
---|
134 | qualityAnalyzer = new BestAverageWorstQualityAnalyzer();
|
---|
135 | ParameterizeAnalyzers();
|
---|
136 | UpdateAnalyzers();
|
---|
137 |
|
---|
138 | RegisterEventHandlers();
|
---|
139 | }
|
---|
140 | [StorableConstructor]
|
---|
141 | private GeneticAlgorithm(bool deserializing) : base(deserializing) {
|
---|
142 | RegisterEventHandlers();
|
---|
143 | }
|
---|
144 |
|
---|
145 | private GeneticAlgorithm(GeneticAlgorithm original, Cloner cloner)
|
---|
146 | : base(original, cloner) {
|
---|
147 | qualityAnalyzer = cloner.Clone(original.qualityAnalyzer);
|
---|
148 | RegisterEventHandlers();
|
---|
149 | }
|
---|
150 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
151 | return new GeneticAlgorithm(this, cloner);
|
---|
152 | }
|
---|
153 |
|
---|
154 | protected override void Initialize(CancellationToken cancellationToken) {
|
---|
155 | base.Initialize(cancellationToken);
|
---|
156 | var max = ((IValueParameter<BoolValue>)Problem.MaximizationParameter).Value.Value;
|
---|
157 | Context.BestQuality = max ? double.MinValue : double.MaxValue;
|
---|
158 |
|
---|
159 | for (var m = 0; m < PopulationSize; m++) {
|
---|
160 | Context.AddToPopulation(new SolutionScope(Problem.Evaluator.QualityParameter.ActualName));
|
---|
161 | Context.RunOperator(Problem.SolutionCreator, m, cancellationToken);
|
---|
162 | }
|
---|
163 |
|
---|
164 | var locker = new object();
|
---|
165 | Parallel.For(0, PopulationSize, (i) => {
|
---|
166 | Context.RunOperator(Problem.Evaluator, Context.AtPopulation(i), cancellationToken);
|
---|
167 | var fit = Context.AtPopulation(i).Fitness;
|
---|
168 | if (max && Context.BestQuality < fit || !max && Context.BestQuality > fit) {
|
---|
169 | lock (locker) {
|
---|
170 | if (max && Context.BestQuality < fit || !max && Context.BestQuality > fit) {
|
---|
171 | Context.BestQuality = fit;
|
---|
172 | }
|
---|
173 | }
|
---|
174 | }
|
---|
175 | });
|
---|
176 |
|
---|
177 | Context.EvaluatedSolutions += PopulationSize;
|
---|
178 |
|
---|
179 | Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
180 | Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
181 | Results.Add(new Result("BestQuality", new DoubleValue(Context.BestQuality)));
|
---|
182 |
|
---|
183 | Context.RunOperator(Analyzer, cancellationToken);
|
---|
184 | }
|
---|
185 |
|
---|
186 | protected override void Run(CancellationToken cancellationToken) {
|
---|
187 | var lastUpdate = ExecutionTime;
|
---|
188 | var max = ((IValueParameter<BoolValue>)Problem.MaximizationParameter).Value.Value;
|
---|
189 |
|
---|
190 | IResult result;
|
---|
191 | while (!StoppingCriterion()) {
|
---|
192 | Context.Iterations++;
|
---|
193 |
|
---|
194 | Context.RunOperator(Selector, cancellationToken);
|
---|
195 | var currentGen = Context.Scope.SubScopes[0];
|
---|
196 | var nextGen = Context.Scope.SubScopes[1];
|
---|
197 | for (var i = 0; i < PopulationSize - Elites; i++) {
|
---|
198 | var offspring = new SolutionScope(Problem.Evaluator.QualityParameter.ActualName);
|
---|
199 | var p1 = nextGen.SubScopes[0];
|
---|
200 | nextGen.SubScopes.RemoveAt(0);
|
---|
201 | offspring.SubScopes.Add(p1);
|
---|
202 | var p2 = nextGen.SubScopes[0];
|
---|
203 | nextGen.SubScopes.RemoveAt(0);
|
---|
204 | offspring.SubScopes.Add(p2);
|
---|
205 | nextGen.SubScopes.Add(offspring);
|
---|
206 |
|
---|
207 | Context.RunOperator(Crossover, offspring, cancellationToken);
|
---|
208 | offspring.SubScopes.Clear();
|
---|
209 | if (Context.Random.NextDouble() < MutationProbability) {
|
---|
210 | Context.RunOperator(Mutator, offspring, cancellationToken);
|
---|
211 | }
|
---|
212 | }
|
---|
213 |
|
---|
214 | var locker = new object();
|
---|
215 | Parallel.For(0, PopulationSize - Elites, (i) => {
|
---|
216 | Context.RunOperator(Problem.Evaluator, nextGen.SubScopes[i], cancellationToken);
|
---|
217 | var fit = ((ISolutionScope)nextGen.SubScopes[i]).Fitness;
|
---|
218 | if (max && Context.BestQuality < fit || !max && Context.BestQuality > fit) {
|
---|
219 | lock (locker) {
|
---|
220 | if (max && Context.BestQuality < fit || !max && Context.BestQuality > fit) {
|
---|
221 | Context.BestQuality = fit;
|
---|
222 | }
|
---|
223 | }
|
---|
224 | }
|
---|
225 | });
|
---|
226 | Context.EvaluatedSolutions += PopulationSize - Elites;
|
---|
227 | var elites = (max ? currentGen.SubScopes.OfType<SolutionScope>()
|
---|
228 | .OrderByDescending(x => x.Fitness).Take(Elites)
|
---|
229 | : currentGen.SubScopes.OfType<SolutionScope>()
|
---|
230 | .OrderBy(x => x.Fitness).Take(Elites)).ToList();
|
---|
231 | if (ReevaluteElites) {
|
---|
232 | Parallel.For(0, Elites, (i) => {
|
---|
233 | Context.RunOperator(Problem.Evaluator, elites[i], cancellationToken);
|
---|
234 | });
|
---|
235 | Context.EvaluatedSolutions += Elites;
|
---|
236 | }
|
---|
237 | nextGen.SubScopes.AddRange(elites);
|
---|
238 | Context.Scope.SubScopes.Replace(nextGen.SubScopes);
|
---|
239 |
|
---|
240 | if (ExecutionTime - lastUpdate > TimeSpan.FromSeconds(1)) {
|
---|
241 | if (Results.TryGetValue("Iterations", out result))
|
---|
242 | ((IntValue)result.Value).Value = Context.Iterations;
|
---|
243 | else Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
244 | if (Results.TryGetValue("EvaluatedSolutions", out result))
|
---|
245 | ((IntValue)result.Value).Value = Context.EvaluatedSolutions;
|
---|
246 | else Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
247 | lastUpdate = ExecutionTime;
|
---|
248 | }
|
---|
249 | if (Results.TryGetValue("BestQuality", out result))
|
---|
250 | ((DoubleValue)result.Value).Value = Context.BestQuality;
|
---|
251 | else Results.Add(new Result("BestQuality", new DoubleValue(Context.BestQuality)));
|
---|
252 |
|
---|
253 | Context.RunOperator(Analyzer, cancellationToken);
|
---|
254 |
|
---|
255 | if (cancellationToken.IsCancellationRequested) break;
|
---|
256 | }
|
---|
257 |
|
---|
258 | if (Results.TryGetValue("Iterations", out result))
|
---|
259 | ((IntValue)result.Value).Value = Context.Iterations;
|
---|
260 | else Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
261 | if (Results.TryGetValue("EvaluatedSolutions", out result))
|
---|
262 | ((IntValue)result.Value).Value = Context.EvaluatedSolutions;
|
---|
263 | else Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
264 |
|
---|
265 | if (Results.TryGetValue("BestQuality", out result))
|
---|
266 | ((DoubleValue) result.Value).Value = Context.BestQuality;
|
---|
267 | else Results.Add(new Result("BestQuality", new DoubleValue(Context.BestQuality)));
|
---|
268 | }
|
---|
269 |
|
---|
270 | public override void Prepare() {
|
---|
271 | if (Problem != null) base.Prepare();
|
---|
272 | }
|
---|
273 |
|
---|
274 | #region Events
|
---|
275 | protected override void OnProblemChanged() {
|
---|
276 | ParameterizeStochasticOperator(Problem.SolutionCreator);
|
---|
277 | ParameterizeStochasticOperator(Problem.Evaluator);
|
---|
278 | foreach (IOperator op in Problem.Operators.OfType<IOperator>()) ParameterizeStochasticOperator(op);
|
---|
279 | ParameterizeSelectors();
|
---|
280 | ParameterizeAnalyzers();
|
---|
281 | ParameterizeIterationBasedOperators();
|
---|
282 | UpdateCrossovers();
|
---|
283 | UpdateMutators();
|
---|
284 | UpdateAnalyzers();
|
---|
285 | Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged);
|
---|
286 | base.OnProblemChanged();
|
---|
287 | }
|
---|
288 |
|
---|
289 | protected override void Problem_OperatorsChanged(object sender, EventArgs e) {
|
---|
290 | foreach (IOperator op in Problem.Operators.OfType<IOperator>()) ParameterizeStochasticOperator(op);
|
---|
291 | ParameterizeIterationBasedOperators();
|
---|
292 | UpdateCrossovers();
|
---|
293 | UpdateMutators();
|
---|
294 | UpdateAnalyzers();
|
---|
295 | base.Problem_OperatorsChanged(sender, e);
|
---|
296 | }
|
---|
297 | private void Elites_ValueChanged(object sender, EventArgs e) {
|
---|
298 | ParameterizeSelectors();
|
---|
299 | }
|
---|
300 | private void PopulationSize_ValueChanged(object sender, EventArgs e) {
|
---|
301 | ParameterizeSelectors();
|
---|
302 | }
|
---|
303 | private void Evaluator_QualityParameter_ActualNameChanged(object sender, EventArgs e) {
|
---|
304 | ParameterizeSelectors();
|
---|
305 | ParameterizeAnalyzers();
|
---|
306 | }
|
---|
307 | #endregion
|
---|
308 |
|
---|
309 | #region Helpers
|
---|
310 | private void RegisterEventHandlers() {
|
---|
311 | PopulationSizeParameter.Value.ValueChanged += new EventHandler(PopulationSize_ValueChanged);
|
---|
312 | ElitesParameter.Value.ValueChanged += new EventHandler(Elites_ValueChanged);
|
---|
313 | if (Problem != null) {
|
---|
314 | Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged);
|
---|
315 | }
|
---|
316 | }
|
---|
317 |
|
---|
318 | private void ParameterizeStochasticOperator(IOperator op) {
|
---|
319 | IStochasticOperator stochasticOp = op as IStochasticOperator;
|
---|
320 | if (stochasticOp != null) {
|
---|
321 | stochasticOp.RandomParameter.ActualName = nameof(Context.Random);
|
---|
322 | stochasticOp.RandomParameter.Hidden = true;
|
---|
323 | }
|
---|
324 | }
|
---|
325 | private void ParameterizeSelectors() {
|
---|
326 | foreach (ISelector selector in SelectorParameter.ValidValues) {
|
---|
327 | selector.CopySelected = new BoolValue(true);
|
---|
328 | selector.NumberOfSelectedSubScopesParameter.Value = new IntValue(2 * (PopulationSizeParameter.Value.Value - ElitesParameter.Value.Value));
|
---|
329 | selector.NumberOfSelectedSubScopesParameter.Hidden = true;
|
---|
330 | ParameterizeStochasticOperator(selector);
|
---|
331 | }
|
---|
332 | if (Problem != null) {
|
---|
333 | foreach (ISingleObjectiveSelector selector in SelectorParameter.ValidValues.OfType<ISingleObjectiveSelector>()) {
|
---|
334 | selector.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
|
---|
335 | selector.MaximizationParameter.Hidden = true;
|
---|
336 | selector.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
|
---|
337 | selector.QualityParameter.Hidden = true;
|
---|
338 | }
|
---|
339 | }
|
---|
340 | }
|
---|
341 | private void ParameterizeAnalyzers() {
|
---|
342 | qualityAnalyzer.ResultsParameter.ActualName = "Results";
|
---|
343 | qualityAnalyzer.ResultsParameter.Hidden = true;
|
---|
344 | if (Problem != null) {
|
---|
345 | qualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
|
---|
346 | qualityAnalyzer.MaximizationParameter.Hidden = true;
|
---|
347 | qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
|
---|
348 | qualityAnalyzer.QualityParameter.Depth = 1;
|
---|
349 | qualityAnalyzer.QualityParameter.Hidden = true;
|
---|
350 | qualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name;
|
---|
351 | qualityAnalyzer.BestKnownQualityParameter.Hidden = true;
|
---|
352 | }
|
---|
353 | }
|
---|
354 | private void ParameterizeIterationBasedOperators() {
|
---|
355 | if (Problem != null) {
|
---|
356 | foreach (IIterationBasedOperator op in Problem.Operators.OfType<IIterationBasedOperator>()) {
|
---|
357 | op.IterationsParameter.ActualName = "Generations";
|
---|
358 | op.IterationsParameter.Hidden = true;
|
---|
359 | op.MaximumIterationsParameter.ActualName = "MaximumGenerations";
|
---|
360 | op.MaximumIterationsParameter.Hidden = true;
|
---|
361 | }
|
---|
362 | }
|
---|
363 | }
|
---|
364 | private void UpdateCrossovers() {
|
---|
365 | ICrossover oldCrossover = CrossoverParameter.Value;
|
---|
366 | CrossoverParameter.ValidValues.Clear();
|
---|
367 | ICrossover defaultCrossover = Problem.Operators.OfType<ICrossover>().FirstOrDefault();
|
---|
368 |
|
---|
369 | foreach (ICrossover crossover in Problem.Operators.OfType<ICrossover>().OrderBy(x => x.Name))
|
---|
370 | CrossoverParameter.ValidValues.Add(crossover);
|
---|
371 |
|
---|
372 | if (oldCrossover != null) {
|
---|
373 | ICrossover crossover = CrossoverParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldCrossover.GetType());
|
---|
374 | if (crossover != null) CrossoverParameter.Value = crossover;
|
---|
375 | else oldCrossover = null;
|
---|
376 | }
|
---|
377 | if (oldCrossover == null && defaultCrossover != null)
|
---|
378 | CrossoverParameter.Value = defaultCrossover;
|
---|
379 | }
|
---|
380 | private void UpdateMutators() {
|
---|
381 | IManipulator oldMutator = MutatorParameter.Value;
|
---|
382 | MutatorParameter.ValidValues.Clear();
|
---|
383 | IManipulator defaultMutator = Problem.Operators.OfType<IManipulator>().FirstOrDefault();
|
---|
384 |
|
---|
385 | foreach (IManipulator mutator in Problem.Operators.OfType<IManipulator>().OrderBy(x => x.Name))
|
---|
386 | MutatorParameter.ValidValues.Add(mutator);
|
---|
387 |
|
---|
388 | if (oldMutator != null) {
|
---|
389 | IManipulator mutator = MutatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldMutator.GetType());
|
---|
390 | if (mutator != null) MutatorParameter.Value = mutator;
|
---|
391 | else oldMutator = null;
|
---|
392 | }
|
---|
393 |
|
---|
394 | if (oldMutator == null && defaultMutator != null)
|
---|
395 | MutatorParameter.Value = defaultMutator;
|
---|
396 | }
|
---|
397 | private void UpdateAnalyzers() {
|
---|
398 | var multiAnalyzer = (MultiAnalyzer)Analyzer;
|
---|
399 | multiAnalyzer.Operators.Clear();
|
---|
400 | if (Problem != null) {
|
---|
401 | foreach (IAnalyzer analyzer in Problem.Operators.OfType<IAnalyzer>()) {
|
---|
402 | foreach (IScopeTreeLookupParameter param in analyzer.Parameters.OfType<IScopeTreeLookupParameter>())
|
---|
403 | param.Depth = 1;
|
---|
404 | multiAnalyzer.Operators.Add(analyzer, analyzer.EnabledByDefault);
|
---|
405 | }
|
---|
406 | }
|
---|
407 | multiAnalyzer.Operators.Add(qualityAnalyzer, qualityAnalyzer.EnabledByDefault);
|
---|
408 | }
|
---|
409 | #endregion
|
---|
410 | }
|
---|
411 | }
|
---|