#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using System; using HeuristicLab.Random; using HeuristicLab.Functions; namespace HeuristicLab.StructureIdentification { public class RampedTreeCreator : OperatorBase { public override string Description { get { return @"Generates a new random operator tree."; } } public RampedTreeCreator() : base() { AddVariableInfo(new VariableInfo("Random", "Uniform random number generator", typeof(MersenneTwister), VariableKind.In)); AddVariableInfo(new VariableInfo("OperatorLibrary", "The operator library containing all available operators", typeof(GPOperatorLibrary), VariableKind.In)); AddVariableInfo(new VariableInfo("MinTreeHeight", "The minimal allowed height of the tree", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("MaxTreeHeight", "The maximal allowed height of the tree", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("BalancedTreesRate", "Determines how many trees should be balanced", typeof(DoubleData), VariableKind.In)); AddVariableInfo(new VariableInfo("FunctionTree", "The created tree", typeof(IFunctionTree), VariableKind.New | VariableKind.Out)); AddVariableInfo(new VariableInfo("TreeSize", "The size (number of nodes) of the tree", typeof(IntData), VariableKind.New | VariableKind.Out)); AddVariableInfo(new VariableInfo("TreeHeight", "The height of the tree", typeof(IntData), VariableKind.New | VariableKind.Out)); } public override IOperation Apply(IScope scope) { IRandom random = GetVariableValue("Random", scope, true); GPOperatorLibrary opLibrary = GetVariableValue("OperatorLibrary", scope, true); int minTreeHeight = GetVariableValue("MinTreeHeight", scope, true).Data; int maxTreeHeight = GetVariableValue("MaxTreeHeight", scope, true).Data; double balancedTreesRate = GetVariableValue("BalancedTreesRate", scope, true).Data; TreeGardener gardener = new TreeGardener(random, opLibrary); int treeHeight = random.Next(minTreeHeight, maxTreeHeight + 1); IFunctionTree root; if(random.NextDouble() <= balancedTreesRate) { root = gardener.CreateBalancedRandomTree(Int32.MaxValue, treeHeight); } else { root = gardener.CreateUnbalancedRandomTree(Int32.MaxValue, treeHeight); } int actualTreeSize = root.Size; int actualTreeHeight = root.Height; scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("FunctionTree"), root)); scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeSize"), new IntData(actualTreeSize))); scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeHeight"), new IntData(actualTreeHeight))); if(!gardener.IsValidTree(root)) { throw new InvalidProgramException(); } if(actualTreeHeight > maxTreeHeight) { throw new InvalidProgramException(); } return gardener.CreateInitializationOperation(gardener.GetAllSubTrees(root), scope); } } }