#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Problems.DataAnalysis.Symbolic.Classification; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// 0R classification algorithm. /// [Item("ZeroR", "0R classification algorithm.")] [Creatable("Data Analysis")] [StorableClass] public sealed class ZeroR : FixedDataAnalysisAlgorithm { [StorableConstructor] private ZeroR(bool deserializing) : base(deserializing) { } private ZeroR(ZeroR original, Cloner cloner) : base(original, cloner) { } public ZeroR() : base() { Problem = new ClassificationProblem(); } public override IDeepCloneable Clone(Cloner cloner) { return new ZeroR(this, cloner); } protected override void Run() { var solution = CreateZeroRSolution(Problem.ProblemData); Results.Add(new Result("ZeroR solution", "The 0R classifier.", solution)); } public static IClassificationSolution CreateZeroRSolution(IClassificationProblemData problemData) { Dataset dataset = problemData.Dataset; string target = problemData.TargetVariable; var classValuesEnumerator = problemData.ClassValues.GetEnumerator(); var classValuesInDatasetEnumerator = dataset.GetDoubleValues(target, problemData.TrainingIndices).GetEnumerator(); Dictionary classValuesCount = new Dictionary(problemData.ClassValues.Count()); //initialize while (classValuesEnumerator.MoveNext()) { classValuesCount[classValuesEnumerator.Current] = 0; } //count occurence of classes while (classValuesInDatasetEnumerator.MoveNext()) { classValuesCount[classValuesInDatasetEnumerator.Current] += 1; } classValuesEnumerator.Reset(); double mostOccurences = -1; double bestClass = double.NaN; while (classValuesEnumerator.MoveNext()) { if (classValuesCount[classValuesEnumerator.Current] > mostOccurences) { mostOccurences = classValuesCount[classValuesEnumerator.Current]; bestClass = classValuesEnumerator.Current; } } ConstantClassificationModel model = new ConstantClassificationModel(bestClass); ConstantClassificationSolution solution = new ConstantClassificationSolution(model, (IClassificationProblemData)problemData.Clone()); return solution; } private static SymbolicDiscriminantFunctionClassificationModel CreateDiscriminantFunctionModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IClassificationProblemData problemData, IEnumerable rows, IEnumerable classValues) { var model = new SymbolicDiscriminantFunctionClassificationModel(tree, interpreter, new AccuracyMaximizationThresholdCalculator()); IList thresholds = new List(); double last = 0; foreach (double item in classValues) { if (thresholds.Count == 0) { thresholds.Add(double.NegativeInfinity); } else { thresholds.Add((last + item) / 2); } last = item; } model.SetThresholdsAndClassValues(thresholds, classValues); return model; } } }