1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Classification;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
34 | /// <summary>
|
---|
35 | /// 0R classification algorithm.
|
---|
36 | /// </summary>
|
---|
37 | [Item("ZeroR", "0R classification algorithm.")]
|
---|
38 | [Creatable("Data Analysis")]
|
---|
39 | [StorableClass]
|
---|
40 | public sealed class ZeroR : FixedDataAnalysisAlgorithm<IClassificationProblem> {
|
---|
41 |
|
---|
42 | [StorableConstructor]
|
---|
43 | private ZeroR(bool deserializing) : base(deserializing) { }
|
---|
44 | private ZeroR(ZeroR original, Cloner cloner)
|
---|
45 | : base(original, cloner) {
|
---|
46 | }
|
---|
47 | public ZeroR()
|
---|
48 | : base() {
|
---|
49 | Problem = new ClassificationProblem();
|
---|
50 | }
|
---|
51 |
|
---|
52 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
53 | return new ZeroR(this, cloner);
|
---|
54 | }
|
---|
55 |
|
---|
56 | protected override void Run() {
|
---|
57 | var solution = CreateZeroRSolution(Problem.ProblemData);
|
---|
58 | Results.Add(new Result("ZeroR solution", "The 0R classifier.", solution));
|
---|
59 | }
|
---|
60 |
|
---|
61 | public static IClassificationSolution CreateZeroRSolution(IClassificationProblemData problemData) {
|
---|
62 | Dataset dataset = problemData.Dataset;
|
---|
63 | string target = problemData.TargetVariable;
|
---|
64 | var classValuesEnumerator = problemData.ClassValues.GetEnumerator();
|
---|
65 | var classValuesInDatasetEnumerator = dataset.GetDoubleValues(target, problemData.TrainingIndices).GetEnumerator();
|
---|
66 |
|
---|
67 | Dictionary<double, int> classValuesCount = new Dictionary<double, int>(problemData.ClassValues.Count());
|
---|
68 |
|
---|
69 | //initialize
|
---|
70 | while (classValuesEnumerator.MoveNext()) {
|
---|
71 | classValuesCount[classValuesEnumerator.Current] = 0;
|
---|
72 | }
|
---|
73 |
|
---|
74 | //count occurence of classes
|
---|
75 | while (classValuesInDatasetEnumerator.MoveNext()) {
|
---|
76 | classValuesCount[classValuesInDatasetEnumerator.Current] += 1;
|
---|
77 | }
|
---|
78 |
|
---|
79 | classValuesEnumerator.Reset();
|
---|
80 | double mostOccurences = -1;
|
---|
81 | double bestClass = double.NaN;
|
---|
82 | while (classValuesEnumerator.MoveNext()) {
|
---|
83 | if (classValuesCount[classValuesEnumerator.Current] > mostOccurences) {
|
---|
84 | mostOccurences = classValuesCount[classValuesEnumerator.Current];
|
---|
85 | bestClass = classValuesEnumerator.Current;
|
---|
86 | }
|
---|
87 | }
|
---|
88 |
|
---|
89 | ConstantClassificationModel model = new ConstantClassificationModel(bestClass);
|
---|
90 | ConstantClassificationSolution solution = new ConstantClassificationSolution(model, (IClassificationProblemData)problemData.Clone());
|
---|
91 |
|
---|
92 | return solution;
|
---|
93 | }
|
---|
94 |
|
---|
95 | private static SymbolicDiscriminantFunctionClassificationModel CreateDiscriminantFunctionModel(ISymbolicExpressionTree tree,
|
---|
96 | ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
97 | IClassificationProblemData problemData,
|
---|
98 | IEnumerable<int> rows,
|
---|
99 | IEnumerable<double> classValues) {
|
---|
100 | var model = new SymbolicDiscriminantFunctionClassificationModel(tree, interpreter, new AccuracyMaximizationThresholdCalculator());
|
---|
101 | IList<double> thresholds = new List<double>();
|
---|
102 | double last = 0;
|
---|
103 | foreach (double item in classValues) {
|
---|
104 | if (thresholds.Count == 0) {
|
---|
105 | thresholds.Add(double.NegativeInfinity);
|
---|
106 | } else {
|
---|
107 | thresholds.Add((last + item) / 2);
|
---|
108 | }
|
---|
109 | last = item;
|
---|
110 | }
|
---|
111 | model.SetThresholdsAndClassValues(thresholds, classValues);
|
---|
112 | return model;
|
---|
113 | }
|
---|
114 | }
|
---|
115 | }
|
---|