#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// 1R classification algorithm. /// [Item("OneR Classification", "1R classification algorithm.")] [StorableClass] public sealed class OneRTest : FixedDataAnalysisAlgorithm { public IValueParameter MinBucketSizeParameter { get { return (IValueParameter)Parameters["MinBucketSize"]; } } [StorableConstructor] private OneRTest(bool deserializing) : base(deserializing) { } private OneRTest(OneRTest original, Cloner cloner) : base(original, cloner) { } public OneRTest() : base() { Parameters.Add(new ValueParameter("MinBucketSize", "Minimum size of a bucket for numerical values. (Except for the rightmost bucket)", new IntValue(6))); Problem = new ClassificationProblem(); } public override IDeepCloneable Clone(Cloner cloner) { return new OneRTest(this, cloner); } protected override void Run() { var solution = CreateOneRSolution(Problem.ProblemData, MinBucketSizeParameter.Value.Value); Results.Add(new Result("OneR solution", "The 1R classifier.", solution)); } public static IClassificationSolution CreateOneRSolution(IClassificationProblemData problemData, int minBucketSize) { var bestClassified = 0; List bestSplits = null; string bestVariable = string.Empty; double bestMissingValuesClass = double.NaN; var classValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices); foreach (var variable in problemData.AllowedInputVariables) { var inputValues = problemData.Dataset.GetDoubleValues(variable, problemData.TrainingIndices); var samples = inputValues.Zip(classValues, (i, v) => new Sample(i, v)).OrderBy(s => s.inputValue); var missingValuesDistribution = samples.Where(s => double.IsNaN(s.inputValue)).GroupBy(s => s.classValue).ToDictionary(s => s.Key, s => s.Count()).MaxItems(s => s.Value).FirstOrDefault(); //calculate class distributions for all distinct inputValues List> classDistributions = new List>(); List thresholds = new List(); double lastValue = double.NaN; foreach (var sample in samples.Where(s => !double.IsNaN(s.inputValue))) { if (sample.inputValue > lastValue || double.IsNaN(lastValue)) { if (!double.IsNaN(lastValue)) thresholds.Add((lastValue + sample.inputValue) / 2); lastValue = sample.inputValue; classDistributions.Add(new Dictionary()); foreach (var classValue in problemData.ClassValues) classDistributions[classDistributions.Count - 1][classValue] = 0; } classDistributions[classDistributions.Count - 1][sample.classValue]++; } thresholds.Add(double.PositiveInfinity); var distribution = classDistributions[0]; var threshold = thresholds[0]; var splits = new List(); for (int i = 1; i < classDistributions.Count; i++) { var samplesInSplit = distribution.Max(d => d.Value); //join splits if there are too few samples in the split or the distributions has the same maximum class value as the current split if (samplesInSplit < minBucketSize || classDistributions[i].MaxItems(d => d.Value).Select(d => d.Key).Contains( distribution.MaxItems(d => d.Value).Select(d => d.Key).First())) { foreach (var classValue in classDistributions[i]) distribution[classValue.Key] += classValue.Value; threshold = thresholds[i]; } else { splits.Add(new Split(threshold, distribution.MaxItems(d => d.Value).Select(d => d.Key).First())); distribution = classDistributions[i]; threshold = thresholds[i]; } } splits.Add(new Split(double.PositiveInfinity, distribution.MaxItems(d => d.Value).Select(d => d.Key).First())); int correctClassified = 0; int splitIndex = 0; foreach (var sample in samples.Where(s => !double.IsNaN(s.inputValue))) { while (sample.inputValue >= splits[splitIndex].thresholdValue) splitIndex++; correctClassified += sample.classValue == splits[splitIndex].classValue ? 1 : 0; } correctClassified += missingValuesDistribution.Value; if (correctClassified > bestClassified) { bestClassified = correctClassified; bestSplits = splits; bestVariable = variable; bestMissingValuesClass = missingValuesDistribution.Value == 0 ? double.NaN : missingValuesDistribution.Key; } } //remove neighboring splits with the same class value for (int i = 0; i < bestSplits.Count - 1; i++) { if (bestSplits[i].classValue == bestSplits[i + 1].classValue) { bestSplits.Remove(bestSplits[i]); i--; } } var model = new OneRClassificationModel(bestVariable, bestSplits.Select(s => s.thresholdValue).ToArray(), bestSplits.Select(s => s.classValue).ToArray(), bestMissingValuesClass); var solution = new OneRClassificationSolution(model, (IClassificationProblemData)problemData.Clone()); return solution; } #region helper classes private class Split { public double thresholdValue; public double classValue; public Split(double thresholdValue, double classValue) { this.thresholdValue = thresholdValue; this.classValue = classValue; } } private class Sample { public double inputValue; public double classValue; public Sample(double inputValue, double classValue) { this.inputValue = inputValue; this.classValue = classValue; } } #endregion } }