#region License Information /* HeuristicLab * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Common; namespace HeuristicLab.Problems.DataAnalysis { public class QualityCalculator //: IOnlineCalculator { public QualityCalculator(double positiveClassValue) { this.positiveClassValue = positiveClassValue; Reset(); } private double positiveClassValue; private int truePositive, falsePositive, trueNegative, falseNegative; public double TruePositiveRate { get { double divisor = truePositive + falseNegative; return divisor.IsAlmost(0) ? double.NaN : truePositive / divisor; } } public double TrueNegativeRate { get { double divisor = falsePositive + trueNegative; return divisor.IsAlmost(0) ? double.NaN : trueNegative / divisor; } } public double PositivePredictiveValue { get { double divisor = truePositive + falsePositive; return divisor.IsAlmost(0) ? double.NaN : truePositive / divisor; } } public double NegativePredictiveValue { get { double divisor = trueNegative + falseNegative; return divisor.IsAlmost(0) ? double.NaN : trueNegative / divisor; } } public double FalsePositiveRate { get { double divisor = falsePositive + trueNegative; return divisor.IsAlmost(0) ? double.NaN : falsePositive / divisor; } } public double FalseDiscoveryRate { get { double divisor = falsePositive + truePositive; return divisor.IsAlmost(0) ? double.NaN : falsePositive / divisor; } } //#region IOnlineCalculator Members private OnlineCalculatorError errorState; public OnlineCalculatorError ErrorState { get { return errorState; } } /* public double Value { get { return FalsePositiveRate; } }*/ public void Reset() { truePositive = 0; falseNegative = 0; trueNegative = 0; falseNegative = 0; errorState = OnlineCalculatorError.InsufficientElementsAdded; } public void Add(double original, double estimated) { // ignore cases where original is NaN completely if (!double.IsNaN(original)) { if (original.IsAlmost(positiveClassValue) || estimated.IsAlmost(positiveClassValue)) //positive class/positive estimation { if (estimated.IsAlmost(original)) { truePositive++; } else { if (estimated.IsAlmost(positiveClassValue)) falsePositive++; else falseNegative++; } } else { //negative class/negative estimation trueNegative++; } errorState = OnlineCalculatorError.None; // number of (non-NaN) samples >= 1 } } //#endregion public void Calculate(IEnumerable originalValues, IEnumerable estimatedValues, out OnlineCalculatorError errorState) { IEnumerator originalEnumerator = originalValues.GetEnumerator(); IEnumerator estimatedEnumerator = estimatedValues.GetEnumerator(); // always move forward both enumerators (do not use short-circuit evaluation!) while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) { double original = originalEnumerator.Current; double estimated = estimatedEnumerator.Current; Add(original, estimated); if (ErrorState != OnlineCalculatorError.None) break; } // check if both enumerators are at the end to make sure both enumerations have the same length if (ErrorState == OnlineCalculatorError.None && (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())) { throw new ArgumentException("Number of elements in originalValues and estimatedValues enumerations doesn't match."); } else { errorState = ErrorState; } } } }