#region License Information
/* HeuristicLab
* Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Linq;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.PermutationEncoding;
namespace HeuristicLab.Problems.Scheduling.CFSAP {
public static class OptimalAssignment {
public static int[] MakeAssignment(Permutation order, IntMatrix processingTimes, ItemList setupTimes, out int T) {
var N = order.Length;
int[,,] weights = new int[2, 2 * N, 2 * N];
int[,] graph = new int[2, N];
int[,] prevPath = new int[2, N + 1]; //Only for optimal assignment evaluation
int[] optimalAssignment = new int[N]; //Only for optimal assignment evaluation
//Calculate weights in the graph
for (int S = 0; S < N; S++) { //Starting point of the arc
for (int sM = 0; sM < 2; sM++) { //Starting point machine
int eM = sM == 0 ? 1 : 0;
weights[sM, S, S + 1] = 0;
for (int E = S + 2; E < S + N; E++)
weights[sM, S, E] =
weights[sM, S, E - 1] +
processingTimes[eM, order[(E - 1) % N]] +
setupTimes[eM][order[(E - 1) % N], order[E % N]];
for (int E = S + 1; E < S + N; E++)
weights[sM, S, E] += (
processingTimes[sM, order[S % N]] +
setupTimes[sM][order[S % N], order[(E + 1) % N]]
);
}
}
//Determine the shortest path in the graph
T = int.MaxValue / 2;
for (int S = 0; S < N - 1; S++) //Start node in graph O(N)
for (int SM = 0; SM < 2; SM++) { //Start node machine in graph O(1)
graph[SM, S] = 0;
graph[SM == 0 ? 1 : 0, S] = int.MaxValue / 2;
prevPath[SM, 0] = -1;
for (int E = S + 1; E < N; E++) //Currently calculated node O(N)
for (int EM = 0; EM < 2; EM++) { //Currently calculated node machine O(1)
graph[EM, E] = int.MaxValue / 2;
for (int EC = S; EC < E; EC++) { //Nodes connected to node E O(N)
int newWeight = graph[EM == 0 ? 1 : 0, EC] + weights[EM == 0 ? 1 : 0, EC, E];
if (newWeight < graph[EM, E]) {
graph[EM, E] = newWeight;
prevPath[EM, E] = EC;
}
}
}
int EP = S + N; //End point.
int newT = int.MaxValue / 2;
for (int EC = S + 1; EC < N; EC++) { //Nodes connected to EP O(N)
int newWeight = graph[SM == 0 ? 1 : 0, EC] + weights[SM == 0 ? 1 : 0, EC, EP];
if (newWeight < newT) {
newT = newWeight;
prevPath[SM, S] = EC;
}
}
if (newT < T) {
T = newT;
optimalAssignment = MakeAssignement(S, SM, prevPath, order);
}
}
//Omitted solutions
for (int machine = 0; machine < 2; machine++) {
int[] assignment = Enumerable.Repeat(machine, N).ToArray();
int newT = CFSAP.EvaluateAssignement(order, assignment, processingTimes, setupTimes);
if (newT < T) { //New best solution has been found
T = newT;
optimalAssignment = assignment;
}
}
return optimalAssignment;
}
private static int[] MakeAssignement(int start, int startMach, int[,] prevPath, Permutation order) {
var N = order.Length;
int[] assignment = Enumerable.Repeat(-1, N).ToArray();
var inverseOrder = new int[N];
for (int i = 0; i < N; i++)
inverseOrder[order[i]] = i;
int end = start + N;
int currMach = startMach;
int currNode = start;
while (true) {
assignment[inverseOrder[currNode]] = currMach;
currNode = prevPath[currMach, currNode];
currMach = currMach == 0 ? 1 : 0;
if (currNode == start)
break;
}
currMach = startMach;
for (int i = 0; i < N; i++) {
if (assignment[inverseOrder[i]] != -1)
currMach = currMach == 0 ? 1 : 0;
else
assignment[inverseOrder[i]] = currMach;
}
return assignment;
}
}
}