#region License Information /* HeuristicLab * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.PermutationEncoding; namespace HeuristicLab.Problems.Scheduling.CFSAP { public static class OptimalAssignment { public static int[] MakeAssignment(Permutation order, IntMatrix processingTimes, ItemList setupTimes, out int T) { var N = order.Length; int[,,] weights = new int[2, 2 * N, 2 * N]; int[,] graph = new int[2, N]; int[,] prevPath = new int[2, N + 1]; //Only for optimal assignment evaluation int[] optimalAssignment = new int[N]; //Only for optimal assignment evaluation //Calculate weights in the graph for (int S = 0; S < N; S++) { //Starting point of the arc for (int sM = 0; sM < 2; sM++) { //Starting point machine int eM = sM == 0 ? 1 : 0; weights[sM, S, S + 1] = 0; for (int E = S + 2; E < S + N; E++) weights[sM, S, E] = weights[sM, S, E - 1] + processingTimes[eM, order[(E - 1) % N]] + setupTimes[eM][order[(E - 1) % N], order[E % N]]; for (int E = S + 1; E < S + N; E++) weights[sM, S, E] += ( processingTimes[sM, order[S % N]] + setupTimes[sM][order[S % N], order[(E + 1) % N]] ); } } //Determine the shortest path in the graph T = int.MaxValue / 2; for (int S = 0; S < N - 1; S++) //Start node in graph O(N) for (int SM = 0; SM < 2; SM++) { //Start node machine in graph O(1) graph[SM, S] = 0; graph[SM == 0 ? 1 : 0, S] = int.MaxValue / 2; prevPath[SM, 0] = -1; for (int E = S + 1; E < N; E++) //Currently calculated node O(N) for (int EM = 0; EM < 2; EM++) { //Currently calculated node machine O(1) graph[EM, E] = int.MaxValue / 2; for (int EC = S; EC < E; EC++) { //Nodes connected to node E O(N) int newWeight = graph[EM == 0 ? 1 : 0, EC] + weights[EM == 0 ? 1 : 0, EC, E]; if (newWeight < graph[EM, E]) { graph[EM, E] = newWeight; prevPath[EM, E] = EC; } } } int EP = S + N; //End point. int newT = int.MaxValue / 2; for (int EC = S + 1; EC < N; EC++) { //Nodes connected to EP O(N) int newWeight = graph[SM == 0 ? 1 : 0, EC] + weights[SM == 0 ? 1 : 0, EC, EP]; if (newWeight < newT) { newT = newWeight; prevPath[SM, S] = EC; } } if (newT < T) { T = newT; optimalAssignment = MakeAssignement(S, SM, prevPath, order); } } //Omitted solutions for (int machine = 0; machine < 2; machine++) { int[] assignment = Enumerable.Repeat(machine, N).ToArray(); int newT = CFSAP.EvaluateAssignement(order, assignment, processingTimes, setupTimes); if (newT < T) { //New best solution has been found T = newT; optimalAssignment = assignment; } } return optimalAssignment; } private static int[] MakeAssignement(int start, int startMach, int[,] prevPath, Permutation order) { var N = order.Length; int[] assignment = Enumerable.Repeat(-1, N).ToArray(); var inverseOrder = new int[N]; for (int i = 0; i < N; i++) inverseOrder[order[i]] = i; int end = start + N; int currMach = startMach; int currNode = start; while (true) { assignment[inverseOrder[currNode]] = currMach; currNode = prevPath[currMach, currNode]; currMach = currMach == 0 ? 1 : 0; if (currNode == start) break; } currMach = startMach; for (int i = 0; i < N; i++) { if (assignment[inverseOrder[i]] != -1) currMach = currMach == 0 ? 1 : 0; else assignment[inverseOrder[i]] = currMach; } return assignment; } } }