#region License Information
/* HeuristicLab
* Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.PermutationEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.Instances;
namespace HeuristicLab.Problems.Scheduling.CFSAP {
[Item("Cyclic flow shop with two machines and a single nest (CFSAP) sequencing problem", "Non-permutational cyclic flow shop scheduling problem with a single nest of two machine from W. Bozejko.")]
[Creatable(CreatableAttribute.Categories.CombinatorialProblems)]
[StorableClass]
public class CFSAPSequenceOnly : SingleObjectiveBasicProblem, IProblemInstanceConsumer {
public override bool Maximization { get { return false; } }
public IValueParameter ProcessingTimesParameter {
get { return (IValueParameter)Parameters["ProcessingTimes"]; }
}
public IntMatrix ProcessingTimes {
get { return ProcessingTimesParameter.Value; }
set { ProcessingTimesParameter.Value = value; }
}
public IValueParameter> SetupTimesParameter {
get { return (IValueParameter>)Parameters["SetupTimes"]; }
}
public ItemList SetupTimes {
get { return SetupTimesParameter.Value; }
set { SetupTimesParameter.Value = value; }
}
[StorableConstructor]
protected CFSAPSequenceOnly(bool deserializing) : base(deserializing) {}
protected CFSAPSequenceOnly(CFSAPSequenceOnly original, Cloner cloner)
: base(original, cloner) {}
public CFSAPSequenceOnly() {
Parameters.Add(new ValueParameter("ProcessingTimes", "The processing times of each job for each machine nest."));
Parameters.Add(new ValueParameter>("SetupTimes", "The sequence dependent set up times among all jobs for each machine nest."));
ProcessingTimesParameter.Value = new IntMatrix(new int[,] {
{ 5, 4, 3, 2, 1 },
{ 1, 2, 3, 4, 5 }
});
SetupTimesParameter.Value = new ItemList(2);
SetupTimesParameter.Value.Add(new IntMatrix(new int[,] {
{ 3, 4, 5, 4, 3 },
{ 3, 4, 5, 4, 3 },
{ 3, 4, 5, 4, 3 },
{ 3, 4, 5, 4, 3 },
{ 3, 4, 5, 4, 3 },
}));
SetupTimesParameter.Value.Add(new IntMatrix(new int[,] {
{ 5, 4, 3, 4, 5 },
{ 5, 4, 3, 4, 5 },
{ 5, 4, 3, 4, 5 },
{ 5, 4, 3, 4, 5 },
{ 5, 4, 3, 4, 5 },
}));
Encoding.Length = 5;
Operators.RemoveAll(x => x is SingleObjectiveMoveGenerator);
Operators.RemoveAll(x => x is SingleObjectiveMoveEvaluator);
Operators.RemoveAll(x => x is SingleObjectiveMoveMaker);
}
public override IDeepCloneable Clone(Cloner cloner) {
return new CFSAPSequenceOnly(this, cloner);
}
public override double Evaluate(Individual individual, IRandom random) {
var order = individual.Permutation(Encoding.Name);
int T = EvaluateSequence(order);
return T;
}
public int EvaluateSequence(Permutation order) {
var N = order.Length;
var processingTimes = ProcessingTimesParameter.Value;
var setupTimes = SetupTimesParameter.Value;
int[,,] weights = new int[2, 2 * N, 2 * N];
int[,] graph = new int[2, N];
int[,] prevPath = new int[2, N + 1]; //Only for optimal assignment evaluation
int[] optimalAssignment = new int[N]; //Only for optimal assignment evaluation
//Calculate weights in the graph
for (int S = 0; S < N; S++) { //Starting point of the arc
for (int sM = 0; sM < 2; sM++) { //Starting point machine
int eM = sM == 0 ? 1 : 0;
weights[sM, S, S + 1] = 0;
for (int E = S + 2; E < S + N; E++)
weights[sM, S, E] =
weights[sM, S, E - 1] +
processingTimes[eM, order[(E - 1) % N]] +
setupTimes[eM][order[(E - 1) % N], order[E % N]];
for (int E = S + 1; E < S + N; E++)
weights[sM, S, E] += (
processingTimes[sM, order[S % N]] +
setupTimes[sM][order[S % N], order[(E + 1) % N]]
);
}
}
//Determine the shortest path in the graph
int T = int.MaxValue / 2;
for (int S = 0; S < N - 1; S++) //Start node in graph O(N)
for (int SM = 0; SM < 2; SM++) { //Start node machine in graph O(1)
graph[SM, S] = 0;
graph[SM == 0 ? 1 : 0, S] = int.MaxValue / 2;
prevPath[SM, 0] = -1;
for (int E = S + 1; E < N; E++) //Currently calculated node O(N)
for (int EM = 0; EM < 2; EM++) { //Currently calculated node machine O(1)
graph[EM, E] = int.MaxValue / 2;
for (int EC = S; EC < E; EC++) { //Nodes connected to node E O(N)
int newWeight = graph[EM == 0 ? 1 : 0, EC] + weights[EM == 0 ? 1 : 0, EC, E];
if (newWeight < graph[EM, E]) {
graph[EM, E] = newWeight;
prevPath[EM, E] = EC;
}
}
}
int EP = S + N; //End point.
int newT = int.MaxValue / 2;
for (int EC = S + 1; EC < N; EC++) { //Nodes connected to EP O(N)
int newWeight = graph[SM == 0 ? 1 : 0, EC] + weights[SM == 0 ? 1 : 0, EC, EP];
if (newWeight < newT) {
newT = newWeight;
prevPath[SM, S] = EC;
}
}
if (newT < T) {
T = newT;
optimalAssignment = MakeAssignement(S, SM, prevPath, order);
}
}
//Omitted solutions
for (int machine = 0; machine < 2; machine++) {
int[] assignment = Enumerable.Repeat(machine, N).ToArray();
int newT = CFSAP.EvaluateAssignement(order, assignment, processingTimes, setupTimes);
if (newT < T) { //New best solution has been found
T = newT;
optimalAssignment = assignment;
}
}
return T;
}
private int[] MakeAssignement(int start, int startMach, int[,] prevPath, Permutation order) {
var N = order.Length;
int[] assignment = Enumerable.Repeat(-1, N).ToArray();
var inverseOrder = new int[N];
for (int i = 0; i < N; i++)
inverseOrder[order[i]] = i;
int end = start + N;
int currMach = startMach;
int currNode = start;
while (true) {
assignment[inverseOrder[currNode]] = currMach;
currNode = prevPath[currMach, currNode];
currMach = currMach == 0 ? 1 : 0;
if (currNode == start)
break;
}
currMach = startMach;
for (int i = 0; i < N; i++) {
if (assignment[inverseOrder[i]] != -1)
currMach = currMach == 0 ? 1 : 0;
else
assignment[inverseOrder[i]] = currMach;
}
return assignment;
}
public void UpdateEncoding() {
Encoding.Length = ProcessingTimes.Columns;
}
///
/// Imports the first nest (index 0) given in the CFSAPData.
/// This is the same as calling Load(data, 0).
///
/// The data of all nests.
public void Load(CFSAPData data) {
Load(data, 0);
}
///
/// Imports a specific nest given in the CFSAPData.
///
/// The data of all nests.
/// The zero-based index of the nest that should be imported.
public void Load(CFSAPData data, int nest) {
if (data.Machines[nest] != 2) throw new ArgumentException("Currently only two machines per nest are supported.");
if (nest < 0 || nest >= data.Nests) throw new ArgumentException("Nest must be a zero-based index.");
var pr = new int[data.Machines[nest], data.Jobs];
for (var i = 0; i < data.Machines[nest]; i++)
for (var j = 0; j < data.Jobs; j++)
pr[i, j] = data.ProcessingTimes[nest][i][j];
ProcessingTimesParameter.Value = new IntMatrix(pr);
var setups = new ItemList(data.Machines[nest]);
for (var m = 0; m < data.SetupTimes[nest].GetLength(0); m++) {
var setupTimes = new int[data.Jobs, data.Jobs];
for (var i = 0; i < data.Jobs; i++)
for (var j = 0; j < data.Jobs; j++)
setupTimes[i, j] = data.SetupTimes[nest][m][i][j];
setups.Add(new IntMatrix(setupTimes));
}
SetupTimesParameter.Value = setups;
UpdateEncoding();
Name = data.Name + "-nest" + nest;
Description = data.Description;
if (data.BestKnownCycleTime.HasValue)
BestKnownQuality = data.BestKnownCycleTime.Value;
else BestKnownQualityParameter.Value = null;
}
}
}