#region License Information /* HeuristicLab * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.Instances; namespace HeuristicLab.Problems.Scheduling.CFSAP { [Item("Cyclic Flow Shop with two machine nests (CFSAP) sequence only", "Non-permutational cyclic flow shop scheduling problem with two machine nests from W. Bozejko.")] [Creatable(CreatableAttribute.Categories.CombinatorialProblems)] [StorableClass] public class CFSAPSequenceOnly : SingleObjectiveBasicProblem, IProblemInstanceConsumer { public override bool Maximization { get { return false; } } public IValueParameter ProcessingTimesParameter { get { return (IValueParameter)Parameters["ProcessingTimes"]; } } public IValueParameter> SetupTimesParameter { get { return (IValueParameter>)Parameters["SetupTimes"]; } } [StorableConstructor] protected CFSAPSequenceOnly(bool deserializing) : base(deserializing) {} protected CFSAPSequenceOnly(CFSAPSequenceOnly original, Cloner cloner) : base(original, cloner) {} public CFSAPSequenceOnly() { Parameters.Add(new ValueParameter("ProcessingTimes", "The processing times of each job for each machine nest.")); Parameters.Add(new ValueParameter>("SetupTimes", "The sequence dependent set up times among all jobs for each machine nest.")); ProcessingTimesParameter.Value = new IntMatrix(new int[,] { { 5, 4, 3, 2, 1 }, { 1, 2, 3, 4, 5 } }); SetupTimesParameter.Value = new ItemList(2); SetupTimesParameter.Value.Add(new IntMatrix(new int[,] { { 3, 4, 5, 4, 3 }, { 3, 4, 5, 4, 3 }, { 3, 4, 5, 4, 3 }, { 3, 4, 5, 4, 3 }, { 3, 4, 5, 4, 3 }, })); SetupTimesParameter.Value.Add(new IntMatrix(new int[,] { { 5, 4, 3, 4, 5 }, { 5, 4, 3, 4, 5 }, { 5, 4, 3, 4, 5 }, { 5, 4, 3, 4, 5 }, { 5, 4, 3, 4, 5 }, })); Encoding.Length = 5; Operators.RemoveAll(x => x is SingleObjectiveMoveGenerator); Operators.RemoveAll(x => x is SingleObjectiveMoveEvaluator); Operators.RemoveAll(x => x is SingleObjectiveMoveMaker); } public override IDeepCloneable Clone(Cloner cloner) { return new CFSAPSequenceOnly(this, cloner); } public override double Evaluate(Individual individual, IRandom random) { var order = individual.Permutation(Encoding.Name); var N = order.Length; var processingTimes = ProcessingTimesParameter.Value; var setupTimes = SetupTimesParameter.Value; int[,,] weights = new int[2, 2 * N, 2 * N]; int[,] graph = new int[2, N]; int[,] prevPath = new int[2, N + 1]; //Only for optimal assignment evaluation int[] optimalAssignment = new int[N]; //Only for optimal assignment evaluation //Calculate weights in the graph for (int S = 0; S < N; S++) { //Starting point of the arc for (int sM = 0; sM < 2; sM++) { //Starting point machine int eM = sM == 0 ? 1 : 0; weights[sM, S, S + 1] = 0; for (int E = S + 2; E < S + N; E++) weights[sM, S, E] = weights[sM, S, E - 1] + processingTimes[eM, order[(E - 1) % N]] + setupTimes[eM][order[(E - 1) % N], order[E % N]]; for (int E = S + 1; E < S + N; E++) weights[sM, S, E] += ( processingTimes[sM, order[S % N]] + setupTimes[sM][order[S % N], order[(E + 1) % N]] ); } } //Determine the shortest path in the graph int T = int.MaxValue / 2; for (int S = 0; S < N - 1; S++) //Start node in graph O(N) for (int SM = 0; SM < 2; SM++) { //Start node machine in graph O(1) graph[SM, S] = 0; graph[SM == 0 ? 1 : 0, S] = int.MaxValue / 2; prevPath[SM, 0] = -1; for (int E = S + 1; E < N; E++) //Currently calculated node O(N) for (int EM = 0; EM < 2; EM++) { //Currently calculated node machine O(1) graph[EM, E] = int.MaxValue / 2; for (int EC = S; EC < E; EC++) { //Nodes connected to node E O(N) int newWeight = graph[EM == 0 ? 1 : 0, EC] + weights[EM == 0 ? 1 : 0, EC, E]; if (newWeight < graph[EM, E]) { graph[EM, E] = newWeight; prevPath[EM, E] = EC; } } } int EP = S + N; //End point. int newT = int.MaxValue / 2; for (int EC = S + 1; EC < N; EC++) { //Nodes connected to EP O(N) int newWeight = graph[SM == 0 ? 1 : 0, EC] + weights[SM == 0 ? 1 : 0, EC, EP]; if (newWeight < newT) { newT = newWeight; prevPath[SM, S] = EC; } } if (newT < T) { T = newT; optimalAssignment = MakeAssignement(S, SM, prevPath, order); } } //Omitted solutions for (int machine = 0; machine < 2; machine++) { int[] assignment = Enumerable.Repeat(machine, N).ToArray(); int newT = EvaluateAssignement(order, assignment, processingTimes, setupTimes); if (newT < T) { //New best solution has been found T = newT; assignment.CopyTo(optimalAssignment, N); } } return T; } //Function to evaluate individual with the specified assignment public static int EvaluateAssignement(Permutation order, int[] assignment, IntMatrix processingTimes, ItemList setupTimes) { var N = order.Length; int T = 0; for (int i = 0; i < N; i++) { int operation = order[i]; int machine = assignment[operation]; T += processingTimes[machine, operation]; } for (int machine = 0; machine < 2; machine++) { int first = -1; int last = -1; for (int i = 0; i < N; i++) { int operation = order[i]; if (assignment[operation] == machine) { if (first == -1) first = operation; else T += setupTimes[machine][last, operation]; last = operation; } } if (last != -1 && first != -1) T += setupTimes[machine][last, first]; } return T; } private int[] MakeAssignement(int start, int startMach, int[,] prevPath, Permutation order) { var N = order.Length; int[] assignment = Enumerable.Repeat(-1, N).ToArray(); var inverseOrder = new int[N]; for (int i = 0; i < N; i++) inverseOrder[order[i]] = i; int end = start + N; int currMach = startMach; int currNode = start; while (true) { assignment[inverseOrder[currNode]] = currMach; currNode = prevPath[currMach, currNode]; currMach = currMach == 0 ? 1 : 0; if (currNode == start) break; } currMach = startMach; for (int i = 0; i < N; i++) { if (assignment[inverseOrder[i]] != -1) currMach = currMach == 0 ? 1 : 0; else assignment[inverseOrder[i]] = currMach; } return assignment; } public void Load(CFSAPData data) { if (data.MachineNests != 2) throw new ArgumentException("Currently only two machine nests are supported."); ProcessingTimesParameter.Value = new IntMatrix(data.ProcessingTimes); var setups = new ItemList(data.MachineNests); for (var m = 0; m < data.SetupTimes.GetLength(0); m++) { var setupTimes = new int[data.Jobs, data.Jobs]; for (var i = 0; i < data.Jobs; i++) for (var j = 0; j < data.Jobs; j++) setupTimes[i, j] = data.SetupTimes[m, i, j]; setups.Add(new IntMatrix(setupTimes)); } SetupTimesParameter.Value = setups; Encoding.Length = data.Jobs; Name = data.Name; Description = data.Description; } } }