/*
* SVM.NET Library
* Copyright (C) 2008 Matthew Johnson
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
using System;
using System.Collections.Generic;
using System.Diagnostics;
namespace SVM
{
//
// Kernel evaluation
//
// the static method k_function is for doing single kernel evaluation
// the constructor of Kernel prepares to calculate the l*l kernel matrix
// the member function get_Q is for getting one column from the Q Matrix
//
internal abstract class QMatrix
{
public abstract float[] get_Q(int column, int len);
public abstract float[] get_QD();
public abstract void swap_index(int i, int j);
}
internal abstract class Kernel : QMatrix
{
private Node[][] _x;
private double[] _x_square;
// Parameter
private KernelType kernel_type;
private int degree;
private double gamma;
private double coef0;
public override void swap_index(int i, int j)
{
do { Node[] _ = _x[i]; _x[i] = _x[j]; _x[j] = _; } while (false);
if (_x_square != null) do { double _ = _x_square[i]; _x_square[i] = _x_square[j]; _x_square[j] = _; } while (false);
}
private static double powi(double baseValue, int times)
{
double tmp = baseValue, ret = 1.0;
for (int t = times; t > 0; t /= 2)
{
if (t % 2 == 1) ret *= tmp;
tmp = tmp * tmp;
}
return ret;
}
private static double tanh(double x)
{
double e = Math.Exp(x);
return 1.0 - 2.0 / (e * e + 1);
}
public double kernel_function(int i, int j)
{
switch (kernel_type)
{
case KernelType.LINEAR:
return dot(_x[i], _x[j]);
case KernelType.POLY:
return powi(gamma * dot(_x[i], _x[j]) + coef0, degree);
case KernelType.RBF:
return Math.Exp(-gamma * (_x_square[i] + _x_square[j] - 2 * dot(_x[i], _x[j])));
case KernelType.SIGMOID:
return tanh(gamma * dot(_x[i], _x[j]) + coef0);
case KernelType.PRECOMPUTED:
return _x[i][(int)(_x[j][0].Value)].Value;
default:
return 0;
}
}
public Kernel(int l, Node[][] x_, Parameter param)
{
this.kernel_type = param.KernelType;
this.degree = param.Degree;
this.gamma = param.Gamma;
this.coef0 = param.Coefficient0;
_x = (Node[][])x_.Clone();
if (kernel_type == KernelType.RBF)
{
_x_square = new double[l];
for (int i = 0; i < l; i++)
_x_square[i] = dot(_x[i], _x[i]);
}
else _x_square = null;
}
public static double dot(Node[] x, Node[] y)
{
double sum = 0;
int xlen = x.Length;
int ylen = y.Length;
int i = 0;
int j = 0;
while (i < xlen && j < ylen)
{
if (x[i].Index == y[j].Index)
sum += x[i++].Value * y[j++].Value;
else
{
if (x[i].Index > y[j].Index)
++j;
else
++i;
}
}
return sum;
}
public static double k_function(Node[] x, Node[] y, Parameter param)
{
switch (param.KernelType)
{
case KernelType.LINEAR:
return dot(x, y);
case KernelType.POLY:
return powi(param.Gamma * dot(x, y) + param.Coefficient0, param.Degree);
case KernelType.RBF:
{
double sum = 0;
int xlen = x.Length;
int ylen = y.Length;
int i = 0;
int j = 0;
while (i < xlen && j < ylen)
{
if (x[i].Index == y[j].Index)
{
double d = x[i++].Value - y[j++].Value;
sum += d * d;
}
else if (x[i].Index > y[j].Index)
{
sum += y[j].Value * y[j].Value;
++j;
}
else
{
sum += x[i].Value * x[i].Value;
++i;
}
}
while (i < xlen)
{
sum += x[i].Value * x[i].Value;
++i;
}
while (j < ylen)
{
sum += y[j].Value * y[j].Value;
++j;
}
return Math.Exp(-param.Gamma * sum);
}
case KernelType.SIGMOID:
return tanh(param.Gamma * dot(x, y) + param.Coefficient0);
case KernelType.PRECOMPUTED:
return x[(int)(y[0].Value)].Value;
default:
return 0;
}
}
}
// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
// Solves:
//
// min 0.5(\alpha^T Q \alpha) + p^T \alpha
//
// y^T \alpha = \delta
// y_i = +1 or -1
// 0 <= alpha_i <= Cp for y_i = 1
// 0 <= alpha_i <= Cn for y_i = -1
//
// Given:
//
// Q, p, y, Cp, Cn, and an initial feasible point \alpha
// l is the size of vectors and matrices
// eps is the stopping tolerance
//
// solution will be put in \alpha, objective value will be put in obj
//
internal class Solver
{
protected int active_size;
protected short[] y;
protected double[] G; // gradient of objective function
protected const byte LOWER_BOUND = 0;
protected const byte UPPER_BOUND = 1;
protected const byte FREE = 2;
protected byte[] alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE
protected double[] alpha;
protected QMatrix Q;
protected float[] QD;
protected double eps;
protected double Cp, Cn;
protected double[] p;
protected int[] active_set;
protected double[] G_bar; // gradient, if we treat free variables as 0
protected int l;
protected bool unshrinked; // XXX
protected const double INF = double.PositiveInfinity;
protected double get_C(int i)
{
return (y[i] > 0) ? Cp : Cn;
}
protected void update_alpha_status(int i)
{
if (alpha[i] >= get_C(i))
alpha_status[i] = UPPER_BOUND;
else if (alpha[i] <= 0)
alpha_status[i] = LOWER_BOUND;
else alpha_status[i] = FREE;
}
protected bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
protected bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
protected bool is_free(int i) { return alpha_status[i] == FREE; }
// java: information about solution except alpha,
// because we cannot return multiple values otherwise...
internal class SolutionInfo
{
public double obj;
public double rho;
public double upper_bound_p;
public double upper_bound_n;
public double r; // for Solver_NU
}
protected void swap_index(int i, int j)
{
Q.swap_index(i, j);
do { short _ = y[i]; y[i] = y[j]; y[j] = _; } while (false);
do { double _ = G[i]; G[i] = G[j]; G[j] = _; } while (false);
do { byte _ = alpha_status[i]; alpha_status[i] = alpha_status[j]; alpha_status[j] = _; } while (false);
do { double _ = alpha[i]; alpha[i] = alpha[j]; alpha[j] = _; } while (false);
do { double _ = p[i]; p[i] = p[j]; p[j] = _; } while (false);
do { int _ = active_set[i]; active_set[i] = active_set[j]; active_set[j] = _; } while (false);
do { double _ = G_bar[i]; G_bar[i] = G_bar[j]; G_bar[j] = _; } while (false);
}
protected void reconstruct_gradient()
{
// reconstruct inactive elements of G from G_bar and free variables
if (active_size == l) return;
int i;
for (i = active_size; i < l; i++)
G[i] = G_bar[i] + p[i];
for (i = 0; i < active_size; i++)
if (is_free(i))
{
float[] Q_i = Q.get_Q(i, l);
double alpha_i = alpha[i];
for (int j = active_size; j < l; j++)
G[j] += alpha_i * Q_i[j];
}
}
public virtual void Solve(int l, QMatrix Q, double[] p_, short[] y_,
double[] alpha_, double Cp, double Cn, double eps, SolutionInfo si, bool shrinking)
{
this.l = l;
this.Q = Q;
QD = Q.get_QD();
p = (double[])p_.Clone();
y = (short[])y_.Clone();
alpha = (double[])alpha_.Clone();
this.Cp = Cp;
this.Cn = Cn;
this.eps = eps;
this.unshrinked = false;
// initialize alpha_status
{
alpha_status = new byte[l];
for (int i = 0; i < l; i++)
update_alpha_status(i);
}
// initialize active set (for shrinking)
{
active_set = new int[l];
for (int i = 0; i < l; i++)
active_set[i] = i;
active_size = l;
}
// initialize gradient
{
G = new double[l];
G_bar = new double[l];
int i;
for (i = 0; i < l; i++)
{
G[i] = p[i];
G_bar[i] = 0;
}
for (i = 0; i < l; i++)
if (!is_lower_bound(i))
{
float[] Q_i = Q.get_Q(i, l);
double alpha_i = alpha[i];
int j;
for (j = 0; j < l; j++)
G[j] += alpha_i * Q_i[j];
if (is_upper_bound(i))
for (j = 0; j < l; j++)
G_bar[j] += get_C(i) * Q_i[j];
}
}
// optimization step
int iter = 0;
int counter = Math.Min(l, 1000) + 1;
int[] working_set = new int[2];
while (true)
{
// show progress and do shrinking
if (--counter == 0)
{
counter = Math.Min(l, 1000);
if (shrinking) do_shrinking();
Debug.Write(".");
}
if (select_working_set(working_set) != 0)
{
// reconstruct the whole gradient
reconstruct_gradient();
// reset active set size and check
active_size = l;
Debug.Write("*");
if (select_working_set(working_set) != 0)
break;
else
counter = 1; // do shrinking next iteration
}
int i = working_set[0];
int j = working_set[1];
++iter;
// update alpha[i] and alpha[j], handle bounds carefully
float[] Q_i = Q.get_Q(i, active_size);
float[] Q_j = Q.get_Q(j, active_size);
double C_i = get_C(i);
double C_j = get_C(j);
double old_alpha_i = alpha[i];
double old_alpha_j = alpha[j];
if (y[i] != y[j])
{
double quad_coef = Q_i[i] + Q_j[j] + 2 * Q_i[j];
if (quad_coef <= 0)
quad_coef = 1e-12;
double delta = (-G[i] - G[j]) / quad_coef;
double diff = alpha[i] - alpha[j];
alpha[i] += delta;
alpha[j] += delta;
if (diff > 0)
{
if (alpha[j] < 0)
{
alpha[j] = 0;
alpha[i] = diff;
}
}
else
{
if (alpha[i] < 0)
{
alpha[i] = 0;
alpha[j] = -diff;
}
}
if (diff > C_i - C_j)
{
if (alpha[i] > C_i)
{
alpha[i] = C_i;
alpha[j] = C_i - diff;
}
}
else
{
if (alpha[j] > C_j)
{
alpha[j] = C_j;
alpha[i] = C_j + diff;
}
}
}
else
{
double quad_coef = Q_i[i] + Q_j[j] - 2 * Q_i[j];
if (quad_coef <= 0)
quad_coef = 1e-12;
double delta = (G[i] - G[j]) / quad_coef;
double sum = alpha[i] + alpha[j];
alpha[i] -= delta;
alpha[j] += delta;
if (sum > C_i)
{
if (alpha[i] > C_i)
{
alpha[i] = C_i;
alpha[j] = sum - C_i;
}
}
else
{
if (alpha[j] < 0)
{
alpha[j] = 0;
alpha[i] = sum;
}
}
if (sum > C_j)
{
if (alpha[j] > C_j)
{
alpha[j] = C_j;
alpha[i] = sum - C_j;
}
}
else
{
if (alpha[i] < 0)
{
alpha[i] = 0;
alpha[j] = sum;
}
}
}
// update G
double delta_alpha_i = alpha[i] - old_alpha_i;
double delta_alpha_j = alpha[j] - old_alpha_j;
for (int k = 0; k < active_size; k++)
{
G[k] += Q_i[k] * delta_alpha_i + Q_j[k] * delta_alpha_j;
}
// update alpha_status and G_bar
{
bool ui = is_upper_bound(i);
bool uj = is_upper_bound(j);
update_alpha_status(i);
update_alpha_status(j);
int k;
if (ui != is_upper_bound(i))
{
Q_i = Q.get_Q(i, l);
if (ui)
for (k = 0; k < l; k++)
G_bar[k] -= C_i * Q_i[k];
else
for (k = 0; k < l; k++)
G_bar[k] += C_i * Q_i[k];
}
if (uj != is_upper_bound(j))
{
Q_j = Q.get_Q(j, l);
if (uj)
for (k = 0; k < l; k++)
G_bar[k] -= C_j * Q_j[k];
else
for (k = 0; k < l; k++)
G_bar[k] += C_j * Q_j[k];
}
}
}
// calculate rho
si.rho = calculate_rho();
// calculate objective value
{
double v = 0;
int i;
for (i = 0; i < l; i++)
v += alpha[i] * (G[i] + p[i]);
si.obj = v / 2;
}
// put back the solution
{
for (int i = 0; i < l; i++)
alpha_[active_set[i]] = alpha[i];
}
si.upper_bound_p = Cp;
si.upper_bound_n = Cn;
Debug.Write("\noptimization finished, #iter = " + iter + "\n");
}
// return 1 if already optimal, return 0 otherwise
protected virtual int select_working_set(int[] working_set)
{
// return i,j such that
// i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
// j: mimimizes the decrease of obj value
// (if quadratic coefficeint <= 0, replace it with tau)
// -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
double Gmax = -INF;
double Gmax2 = -INF;
int Gmax_idx = -1;
int Gmin_idx = -1;
double obj_diff_min = INF;
for (int t = 0; t < active_size; t++)
if (y[t] == +1)
{
if (!is_upper_bound(t))
if (-G[t] >= Gmax)
{
Gmax = -G[t];
Gmax_idx = t;
}
}
else
{
if (!is_lower_bound(t))
if (G[t] >= Gmax)
{
Gmax = G[t];
Gmax_idx = t;
}
}
int i = Gmax_idx;
float[] Q_i = null;
if (i != -1) // null Q_i not accessed: Gmax=-INF if i=-1
Q_i = Q.get_Q(i, active_size);
for (int j = 0; j < active_size; j++)
{
if (y[j] == +1)
{
if (!is_lower_bound(j))
{
double grad_diff = Gmax + G[j];
if (G[j] >= Gmax2)
Gmax2 = G[j];
if (grad_diff > 0)
{
double obj_diff;
double quad_coef = Q_i[i] + QD[j] - 2 * y[i] * Q_i[j];
if (quad_coef > 0)
obj_diff = -(grad_diff * grad_diff) / quad_coef;
else
obj_diff = -(grad_diff * grad_diff) / 1e-12;
if (obj_diff <= obj_diff_min)
{
Gmin_idx = j;
obj_diff_min = obj_diff;
}
}
}
}
else
{
if (!is_upper_bound(j))
{
double grad_diff = Gmax - G[j];
if (-G[j] >= Gmax2)
Gmax2 = -G[j];
if (grad_diff > 0)
{
double obj_diff;
double quad_coef = Q_i[i] + QD[j] + 2 * y[i] * Q_i[j];
if (quad_coef > 0)
obj_diff = -(grad_diff * grad_diff) / quad_coef;
else
obj_diff = -(grad_diff * grad_diff) / 1e-12;
if (obj_diff <= obj_diff_min)
{
Gmin_idx = j;
obj_diff_min = obj_diff;
}
}
}
}
}
if (Gmax + Gmax2 < eps)
return 1;
working_set[0] = Gmax_idx;
working_set[1] = Gmin_idx;
return 0;
}
private bool be_shrunken(int i, double Gmax1, double Gmax2)
{
if (is_upper_bound(i))
{
if (y[i] == +1)
return (-G[i] > Gmax1);
else
return (-G[i] > Gmax2);
}
else if (is_lower_bound(i))
{
if (y[i] == +1)
return (G[i] > Gmax2);
else
return (G[i] > Gmax1);
}
else
return (false);
}
protected virtual void do_shrinking()
{
int i;
double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) }
double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) }
// find maximal violating pair first
for (i = 0; i < active_size; i++)
{
if (y[i] == +1)
{
if (!is_upper_bound(i))
{
if (-G[i] >= Gmax1)
Gmax1 = -G[i];
}
if (!is_lower_bound(i))
{
if (G[i] >= Gmax2)
Gmax2 = G[i];
}
}
else
{
if (!is_upper_bound(i))
{
if (-G[i] >= Gmax2)
Gmax2 = -G[i];
}
if (!is_lower_bound(i))
{
if (G[i] >= Gmax1)
Gmax1 = G[i];
}
}
}
// shrink
for (i = 0; i < active_size; i++)
if (be_shrunken(i, Gmax1, Gmax2))
{
active_size--;
while (active_size > i)
{
if (!be_shrunken(active_size, Gmax1, Gmax2))
{
swap_index(i, active_size);
break;
}
active_size--;
}
}
// unshrink, check all variables again before sealed iterations
if (unshrinked || Gmax1 + Gmax2 > eps * 10) return;
unshrinked = true;
reconstruct_gradient();
for (i = l - 1; i >= active_size; i--)
if (!be_shrunken(i, Gmax1, Gmax2))
{
while (active_size < i)
{
if (be_shrunken(active_size, Gmax1, Gmax2))
{
swap_index(i, active_size);
break;
}
active_size++;
}
active_size++;
}
}
protected virtual double calculate_rho()
{
double r;
int nr_free = 0;
double ub = INF, lb = -INF, sum_free = 0;
for (int i = 0; i < active_size; i++)
{
double yG = y[i] * G[i];
if (is_lower_bound(i))
{
if (y[i] > 0)
ub = Math.Min(ub, yG);
else
lb = Math.Max(lb, yG);
}
else if (is_upper_bound(i))
{
if (y[i] < 0)
ub = Math.Min(ub, yG);
else
lb = Math.Max(lb, yG);
}
else
{
++nr_free;
sum_free += yG;
}
}
if (nr_free > 0)
r = sum_free / nr_free;
else
r = (ub + lb) / 2;
return r;
}
}
//
// Solver for nu-svm classification and regression
//
// additional constraint: e^T \alpha = constant
//
sealed class Solver_NU : Solver
{
private SolutionInfo si;
public override void Solve(int l, QMatrix Q, double[] p, short[] y,
double[] alpha, double Cp, double Cn, double eps,
SolutionInfo si, bool shrinking)
{
this.si = si;
base.Solve(l, Q, p, y, alpha, Cp, Cn, eps, si, shrinking);
}
// return 1 if already optimal, return 0 otherwise
protected override int select_working_set(int[] working_set)
{
// return i,j such that y_i = y_j and
// i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
// j: minimizes the decrease of obj value
// (if quadratic coefficeint <= 0, replace it with tau)
// -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
double Gmaxp = -INF;
double Gmaxp2 = -INF;
int Gmaxp_idx = -1;
double Gmaxn = -INF;
double Gmaxn2 = -INF;
int Gmaxn_idx = -1;
int Gmin_idx = -1;
double obj_diff_min = INF;
for (int t = 0; t < active_size; t++)
if (y[t] == +1)
{
if (!is_upper_bound(t))
if (-G[t] >= Gmaxp)
{
Gmaxp = -G[t];
Gmaxp_idx = t;
}
}
else
{
if (!is_lower_bound(t))
if (G[t] >= Gmaxn)
{
Gmaxn = G[t];
Gmaxn_idx = t;
}
}
int ip = Gmaxp_idx;
int iN = Gmaxn_idx;
float[] Q_ip = null;
float[] Q_in = null;
if (ip != -1) // null Q_ip not accessed: Gmaxp=-INF if ip=-1
Q_ip = Q.get_Q(ip, active_size);
if (iN != -1)
Q_in = Q.get_Q(iN, active_size);
for (int j = 0; j < active_size; j++)
{
if (y[j] == +1)
{
if (!is_lower_bound(j))
{
double grad_diff = Gmaxp + G[j];
if (G[j] >= Gmaxp2)
Gmaxp2 = G[j];
if (grad_diff > 0)
{
double obj_diff;
double quad_coef = Q_ip[ip] + QD[j] - 2 * Q_ip[j];
if (quad_coef > 0)
obj_diff = -(grad_diff * grad_diff) / quad_coef;
else
obj_diff = -(grad_diff * grad_diff) / 1e-12;
if (obj_diff <= obj_diff_min)
{
Gmin_idx = j;
obj_diff_min = obj_diff;
}
}
}
}
else
{
if (!is_upper_bound(j))
{
double grad_diff = Gmaxn - G[j];
if (-G[j] >= Gmaxn2)
Gmaxn2 = -G[j];
if (grad_diff > 0)
{
double obj_diff;
double quad_coef = Q_in[iN] + QD[j] - 2 * Q_in[j];
if (quad_coef > 0)
obj_diff = -(grad_diff * grad_diff) / quad_coef;
else
obj_diff = -(grad_diff * grad_diff) / 1e-12;
if (obj_diff <= obj_diff_min)
{
Gmin_idx = j;
obj_diff_min = obj_diff;
}
}
}
}
}
if (Math.Max(Gmaxp + Gmaxp2, Gmaxn + Gmaxn2) < eps)
return 1;
if (y[Gmin_idx] == +1)
working_set[0] = Gmaxp_idx;
else
working_set[0] = Gmaxn_idx;
working_set[1] = Gmin_idx;
return 0;
}
private bool be_shrunken(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4)
{
if (is_upper_bound(i))
{
if (y[i] == +1)
return (-G[i] > Gmax1);
else
return (-G[i] > Gmax4);
}
else if (is_lower_bound(i))
{
if (y[i] == +1)
return (G[i] > Gmax2);
else
return (G[i] > Gmax3);
}
else
return (false);
}
protected override void do_shrinking()
{
double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
// find maximal violating pair first
int i;
for (i = 0; i < active_size; i++)
{
if (!is_upper_bound(i))
{
if (y[i] == +1)
{
if (-G[i] > Gmax1) Gmax1 = -G[i];
}
else if (-G[i] > Gmax4) Gmax4 = -G[i];
}
if (!is_lower_bound(i))
{
if (y[i] == +1)
{
if (G[i] > Gmax2) Gmax2 = G[i];
}
else if (G[i] > Gmax3) Gmax3 = G[i];
}
}
// shrinking
for (i = 0; i < active_size; i++)
if (be_shrunken(i, Gmax1, Gmax2, Gmax3, Gmax4))
{
active_size--;
while (active_size > i)
{
if (!be_shrunken(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
{
swap_index(i, active_size);
break;
}
active_size--;
}
}
if (unshrinked || Math.Max(Gmax1 + Gmax2, Gmax3 + Gmax4) > eps * 10) return;
unshrinked = true;
reconstruct_gradient();
for (i = l - 1; i >= active_size; i--)
if (!be_shrunken(i, Gmax1, Gmax2, Gmax3, Gmax4))
{
while (active_size < i)
{
if (be_shrunken(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
{
swap_index(i, active_size);
break;
}
active_size++;
}
active_size++;
}
}
protected override double calculate_rho()
{
int nr_free1 = 0, nr_free2 = 0;
double ub1 = INF, ub2 = INF;
double lb1 = -INF, lb2 = -INF;
double sum_free1 = 0, sum_free2 = 0;
for (int i = 0; i < active_size; i++)
{
if (y[i] == +1)
{
if (is_lower_bound(i))
ub1 = Math.Min(ub1, G[i]);
else if (is_upper_bound(i))
lb1 = Math.Max(lb1, G[i]);
else
{
++nr_free1;
sum_free1 += G[i];
}
}
else
{
if (is_lower_bound(i))
ub2 = Math.Min(ub2, G[i]);
else if (is_upper_bound(i))
lb2 = Math.Max(lb2, G[i]);
else
{
++nr_free2;
sum_free2 += G[i];
}
}
}
double r1, r2;
if (nr_free1 > 0)
r1 = sum_free1 / nr_free1;
else
r1 = (ub1 + lb1) / 2;
if (nr_free2 > 0)
r2 = sum_free2 / nr_free2;
else
r2 = (ub2 + lb2) / 2;
si.r = (r1 + r2) / 2;
return (r1 - r2) / 2;
}
}
//
// Q matrices for various formulations
//
class SVC_Q : Kernel
{
private short[] y;
private Cache cache;
private float[] QD;
public SVC_Q(Problem prob, Parameter param, short[] y_) : base(prob.Count, prob.X, param)
{
y = (short[])y_.Clone();
cache = new Cache(prob.Count, (long)(param.CacheSize * (1 << 20)));
QD = new float[prob.Count];
for (int i = 0; i < prob.Count; i++)
QD[i] = (float)kernel_function(i, i);
}
public override float[] get_Q(int i, int len)
{
float[][] data = new float[1][];
int start;
if ((start = cache.get_data(i, data, len)) < len)
{
for (int j = start; j < len; j++)
data[0][j] = (float)(y[i] * y[j] * kernel_function(i, j));
}
return data[0];
}
public override float[] get_QD()
{
return QD;
}
public override void swap_index(int i, int j)
{
cache.swap_index(i, j);
base.swap_index(i, j);
do { short _ = y[i]; y[i] = y[j]; y[j] = _; } while (false);
do { float _ = QD[i]; QD[i] = QD[j]; QD[j] = _; } while (false);
}
}
class ONE_CLASS_Q : Kernel
{
private Cache cache;
private float[] QD;
public ONE_CLASS_Q(Problem prob, Parameter param) : base(prob.Count, prob.X, param)
{
cache = new Cache(prob.Count, (long)(param.CacheSize * (1 << 20)));
QD = new float[prob.Count];
for (int i = 0; i < prob.Count; i++)
QD[i] = (float)kernel_function(i, i);
}
public override float[] get_Q(int i, int len)
{
float[][] data = new float[1][];
int start;
if ((start = cache.get_data(i, data, len)) < len)
{
for (int j = start; j < len; j++)
data[0][j] = (float)kernel_function(i, j);
}
return data[0];
}
public override float[] get_QD()
{
return QD;
}
public override void swap_index(int i, int j)
{
cache.swap_index(i, j);
base.swap_index(i, j);
do { float _ = QD[i]; QD[i] = QD[j]; QD[j] = _; } while (false);
}
}
class SVR_Q : Kernel
{
private int l;
private Cache cache;
private short[] sign;
private int[] index;
private int next_buffer;
private float[][] buffer;
private float[] QD;
public SVR_Q(Problem prob, Parameter param)
: base(prob.Count, prob.X, param)
{
l = prob.Count;
cache = new Cache(l, (long)(param.CacheSize * (1 << 20)));
QD = new float[2 * l];
sign = new short[2 * l];
index = new int[2 * l];
for (int k = 0; k < l; k++)
{
sign[k] = 1;
sign[k + l] = -1;
index[k] = k;
index[k + l] = k;
QD[k] = (float)kernel_function(k, k);
QD[k + l] = QD[k];
}
buffer = new float[2][];
buffer[0] = new float[2 * l];
buffer[1] = new float[2 * l];
next_buffer = 0;
}
public override void swap_index(int i, int j)
{
do { short _ = sign[i]; sign[i] = sign[j]; sign[j] = _; } while (false);
do { int _ = index[i]; index[i] = index[j]; index[j] = _; } while (false);
do { float _ = QD[i]; QD[i] = QD[j]; QD[j] = _; } while (false);
}
public override float[] get_Q(int i, int len)
{
float[][] data = new float[1][];
int real_i = index[i];
if (cache.get_data(real_i, data, l) < l)
{
for (int j = 0; j < l; j++)
data[0][j] = (float)kernel_function(real_i, j);
}
// reorder and copy
float[] buf = buffer[next_buffer];
next_buffer = 1 - next_buffer;
short si = sign[i];
for (int j = 0; j < len; j++)
buf[j] = si * sign[j] * data[0][index[j]];
return buf;
}
public override float[] get_QD()
{
return QD;
}
}
internal static class Procedures
{
//
// construct and solve various formulations
//
private static void solve_c_svc(Problem prob, Parameter param,
double[] alpha, Solver.SolutionInfo si,
double Cp, double Cn)
{
int l = prob.Count;
double[] minus_ones = new double[l];
short[] y = new short[l];
int i;
for (i = 0; i < l; i++)
{
alpha[i] = 0;
minus_ones[i] = -1;
if (prob.Y[i] > 0) y[i] = +1; else y[i] = -1;
}
Solver s = new Solver();
s.Solve(l, new SVC_Q(prob, param, y), minus_ones, y,
alpha, Cp, Cn, param.EPS, si, param.Shrinking);
double sum_alpha = 0;
for (i = 0; i < l; i++)
sum_alpha += alpha[i];
if (Cp == Cn)
Debug.Write("nu = " + sum_alpha / (Cp * prob.Count) + "\n");
for (i = 0; i < l; i++)
alpha[i] *= y[i];
}
private static void solve_nu_svc(Problem prob, Parameter param,
double[] alpha, Solver.SolutionInfo si)
{
int i;
int l = prob.Count;
double nu = param.Nu;
short[] y = new short[l];
for (i = 0; i < l; i++)
if (prob.Y[i] > 0)
y[i] = +1;
else
y[i] = -1;
double sum_pos = nu * l / 2;
double sum_neg = nu * l / 2;
for (i = 0; i < l; i++)
if (y[i] == +1)
{
alpha[i] = Math.Min(1.0, sum_pos);
sum_pos -= alpha[i];
}
else
{
alpha[i] = Math.Min(1.0, sum_neg);
sum_neg -= alpha[i];
}
double[] zeros = new double[l];
for (i = 0; i < l; i++)
zeros[i] = 0;
Solver_NU s = new Solver_NU();
s.Solve(l, new SVC_Q(prob, param, y), zeros, y,
alpha, 1.0, 1.0, param.EPS, si, param.Shrinking);
double r = si.r;
Debug.Write("C = " + 1 / r + "\n");
for (i = 0; i < l; i++)
alpha[i] *= y[i] / r;
si.rho /= r;
si.obj /= (r * r);
si.upper_bound_p = 1 / r;
si.upper_bound_n = 1 / r;
}
private static void solve_one_class(Problem prob, Parameter param,
double[] alpha, Solver.SolutionInfo si)
{
int l = prob.Count;
double[] zeros = new double[l];
short[] ones = new short[l];
int i;
int n = (int)(param.Nu * prob.Count); // # of alpha's at upper bound
for (i = 0; i < n; i++)
alpha[i] = 1;
if (n < prob.Count)
alpha[n] = param.Nu * prob.Count - n;
for (i = n + 1; i < l; i++)
alpha[i] = 0;
for (i = 0; i < l; i++)
{
zeros[i] = 0;
ones[i] = 1;
}
Solver s = new Solver();
s.Solve(l, new ONE_CLASS_Q(prob, param), zeros, ones,
alpha, 1.0, 1.0, param.EPS, si, param.Shrinking);
}
private static void solve_epsilon_svr(Problem prob, Parameter param,
double[] alpha, Solver.SolutionInfo si)
{
int l = prob.Count;
double[] alpha2 = new double[2 * l];
double[] linear_term = new double[2 * l];
short[] y = new short[2 * l];
int i;
for (i = 0; i < l; i++)
{
alpha2[i] = 0;
linear_term[i] = param.P - prob.Y[i];
y[i] = 1;
alpha2[i + l] = 0;
linear_term[i + l] = param.P + prob.Y[i];
y[i + l] = -1;
}
Solver s = new Solver();
s.Solve(2 * l, new SVR_Q(prob, param), linear_term, y,
alpha2, param.C, param.C, param.EPS, si, param.Shrinking);
double sum_alpha = 0;
for (i = 0; i < l; i++)
{
alpha[i] = alpha2[i] - alpha2[i + l];
sum_alpha += Math.Abs(alpha[i]);
}
Debug.Write("nu = " + sum_alpha / (param.C * l) + "\n");
}
private static void solve_nu_svr(Problem prob, Parameter param,
double[] alpha, Solver.SolutionInfo si)
{
int l = prob.Count;
double C = param.C;
double[] alpha2 = new double[2 * l];
double[] linear_term = new double[2 * l];
short[] y = new short[2 * l];
int i;
double sum = C * param.Nu * l / 2;
for (i = 0; i < l; i++)
{
alpha2[i] = alpha2[i + l] = Math.Min(sum, C);
sum -= alpha2[i];
linear_term[i] = -prob.Y[i];
y[i] = 1;
linear_term[i + l] = prob.Y[i];
y[i + l] = -1;
}
Solver_NU s = new Solver_NU();
s.Solve(2 * l, new SVR_Q(prob, param), linear_term, y, alpha2, C, C, param.EPS, si, param.Shrinking);
Debug.Write("epsilon = " + (-si.r) + "\n");
for (i = 0; i < l; i++)
alpha[i] = alpha2[i] - alpha2[i + l];
}
//
// decision_function
//
private class decision_function
{
public double[] alpha;
public double rho;
};
static decision_function svm_train_one(
Problem prob, Parameter param,
double Cp, double Cn)
{
double[] alpha = new double[prob.Count];
Solver.SolutionInfo si = new Solver.SolutionInfo();
switch (param.SvmType)
{
case SvmType.C_SVC:
solve_c_svc(prob, param, alpha, si, Cp, Cn);
break;
case SvmType.NU_SVC:
solve_nu_svc(prob, param, alpha, si);
break;
case SvmType.ONE_CLASS:
solve_one_class(prob, param, alpha, si);
break;
case SvmType.EPSILON_SVR:
solve_epsilon_svr(prob, param, alpha, si);
break;
case SvmType.NU_SVR:
solve_nu_svr(prob, param, alpha, si);
break;
}
Debug.Write("obj = " + si.obj + ", rho = " + si.rho + "\n");
// output SVs
int nSV = 0;
int nBSV = 0;
for (int i = 0; i < prob.Count; i++)
{
if (Math.Abs(alpha[i]) > 0)
{
++nSV;
if (prob.Y[i] > 0)
{
if (Math.Abs(alpha[i]) >= si.upper_bound_p)
++nBSV;
}
else
{
if (Math.Abs(alpha[i]) >= si.upper_bound_n)
++nBSV;
}
}
}
Debug.Write("nSV = " + nSV + ", nBSV = " + nBSV + "\n");
decision_function f = new decision_function();
f.alpha = alpha;
f.rho = si.rho;
return f;
}
// Platt's binary SVM Probablistic Output: an improvement from Lin et al.
private static void sigmoid_train(int l, double[] dec_values, double[] labels,
double[] probAB)
{
double A, B;
double prior1 = 0, prior0 = 0;
int i;
for (i = 0; i < l; i++)
if (labels[i] > 0) prior1 += 1;
else prior0 += 1;
int max_iter = 100; // Maximal number of iterations
double min_step = 1e-10; // Minimal step taken in line search
double sigma = 1e-3; // For numerically strict PD of Hessian
double eps = 1e-5;
double hiTarget = (prior1 + 1.0) / (prior1 + 2.0);
double loTarget = 1 / (prior0 + 2.0);
double[] t = new double[l];
double fApB, p, q, h11, h22, h21, g1, g2, det, dA, dB, gd, stepsize;
double newA, newB, newf, d1, d2;
int iter;
// Initial Point and Initial Fun Value
A = 0.0; B = Math.Log((prior0 + 1.0) / (prior1 + 1.0));
double fval = 0.0;
for (i = 0; i < l; i++)
{
if (labels[i] > 0) t[i] = hiTarget;
else t[i] = loTarget;
fApB = dec_values[i] * A + B;
if (fApB >= 0)
fval += t[i] * fApB + Math.Log(1 + Math.Exp(-fApB));
else
fval += (t[i] - 1) * fApB + Math.Log(1 + Math.Exp(fApB));
}
for (iter = 0; iter < max_iter; iter++)
{
// Update Gradient and Hessian (use H' = H + sigma I)
h11 = sigma; // numerically ensures strict PD
h22 = sigma;
h21 = 0.0; g1 = 0.0; g2 = 0.0;
for (i = 0; i < l; i++)
{
fApB = dec_values[i] * A + B;
if (fApB >= 0)
{
p = Math.Exp(-fApB) / (1.0 + Math.Exp(-fApB));
q = 1.0 / (1.0 + Math.Exp(-fApB));
}
else
{
p = 1.0 / (1.0 + Math.Exp(fApB));
q = Math.Exp(fApB) / (1.0 + Math.Exp(fApB));
}
d2 = p * q;
h11 += dec_values[i] * dec_values[i] * d2;
h22 += d2;
h21 += dec_values[i] * d2;
d1 = t[i] - p;
g1 += dec_values[i] * d1;
g2 += d1;
}
// Stopping Criteria
if (Math.Abs(g1) < eps && Math.Abs(g2) < eps)
break;
// Finding Newton direction: -inv(H') * g
det = h11 * h22 - h21 * h21;
dA = -(h22 * g1 - h21 * g2) / det;
dB = -(-h21 * g1 + h11 * g2) / det;
gd = g1 * dA + g2 * dB;
stepsize = 1; // Line Search
while (stepsize >= min_step)
{
newA = A + stepsize * dA;
newB = B + stepsize * dB;
// New function value
newf = 0.0;
for (i = 0; i < l; i++)
{
fApB = dec_values[i] * newA + newB;
if (fApB >= 0)
newf += t[i] * fApB + Math.Log(1 + Math.Exp(-fApB));
else
newf += (t[i] - 1) * fApB + Math.Log(1 + Math.Exp(fApB));
}
// Check sufficient decrease
if (newf < fval + 0.0001 * stepsize * gd)
{
A = newA; B = newB; fval = newf;
break;
}
else
stepsize = stepsize / 2.0;
}
if (stepsize < min_step)
{
Debug.Write("Line search fails in two-class probability estimates\n");
break;
}
}
if (iter >= max_iter)
Debug.Write("Reaching maximal iterations in two-class probability estimates\n");
probAB[0] = A; probAB[1] = B;
}
private static double sigmoid_predict(double decision_value, double A, double B)
{
double fApB = decision_value * A + B;
if (fApB >= 0)
return Math.Exp(-fApB) / (1.0 + Math.Exp(-fApB));
else
return 1.0 / (1 + Math.Exp(fApB));
}
// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
private static void multiclass_probability(int k, double[,] r, double[] p)
{
int t,j;
int iter = 0, max_iter=Math.Max(100,k);
double[,] Q=new double[k,k];
double[] Qp= new double[k];
double pQp, eps=0.005/k;
for (t=0;tmax_error)
max_error=error;
}
if (max_error=max_iter)
Debug.Write("Exceeds max_iter in multiclass_prob\n");
}
// Cross-validation decision values for probability estimates
private static void svm_binary_svc_probability(Problem prob, Parameter param, double Cp, double Cn, double[] probAB)
{
Random rand = new Random();
int i;
int nr_fold = 5;
int[] perm = new int[prob.Count];
double[] dec_values = new double[prob.Count];
// random shuffle
for (i = 0; i < prob.Count; i++) perm[i] = i;
for (i = 0; i < prob.Count; i++)
{
int j = i + (int)(rand.NextDouble() * (prob.Count - i));
do { int _ = perm[i]; perm[i] = perm[j]; perm[j] = _; } while (false);
}
for (i = 0; i < nr_fold; i++)
{
int begin = i * prob.Count / nr_fold;
int end = (i + 1) * prob.Count / nr_fold;
int j, k;
Problem subprob = new Problem();
subprob.Count = prob.Count - (end - begin);
subprob.X = new Node[subprob.Count][];
subprob.Y = new double[subprob.Count];
k = 0;
for (j = 0; j < begin; j++)
{
subprob.X[k] = prob.X[perm[j]];
subprob.Y[k] = prob.Y[perm[j]];
++k;
}
for (j = end; j < prob.Count; j++)
{
subprob.X[k] = prob.X[perm[j]];
subprob.Y[k] = prob.Y[perm[j]];
++k;
}
int p_count = 0, n_count = 0;
for (j = 0; j < k; j++)
if (subprob.Y[j] > 0)
p_count++;
else
n_count++;
if (p_count == 0 && n_count == 0)
for (j = begin; j < end; j++)
dec_values[perm[j]] = 0;
else if (p_count > 0 && n_count == 0)
for (j = begin; j < end; j++)
dec_values[perm[j]] = 1;
else if (p_count == 0 && n_count > 0)
for (j = begin; j < end; j++)
dec_values[perm[j]] = -1;
else
{
Parameter subparam = (Parameter)param.Clone();
subparam.Probability = false;
subparam.C = 1.0;
subparam.WeightCount = 2;
subparam.WeightLabels = new int[2];
subparam.Weights = new double[2];
subparam.WeightLabels[0] = +1;
subparam.WeightLabels[1] = -1;
subparam.Weights[0] = Cp;
subparam.Weights[1] = Cn;
Model submodel = svm_train(subprob, subparam);
for (j = begin; j < end; j++)
{
double[] dec_value = new double[1];
svm_predict_values(submodel, prob.X[perm[j]], dec_value);
dec_values[perm[j]] = dec_value[0];
// ensure +1 -1 order; reason not using CV subroutine
dec_values[perm[j]] *= submodel.ClassLabels[0];
}
}
}
sigmoid_train(prob.Count, dec_values, prob.Y, probAB);
}
// Return parameter of a Laplace distribution
private static double svm_svr_probability(Problem prob, Parameter param)
{
int i;
int nr_fold = 5;
double[] ymv = new double[prob.Count];
double mae = 0;
Parameter newparam = (Parameter)param.Clone();
newparam.Probability = false;
svm_cross_validation(prob, newparam, nr_fold, ymv, null);
for (i = 0; i < prob.Count; i++)
{
ymv[i] = prob.Y[i] - ymv[i];
mae += Math.Abs(ymv[i]);
}
mae /= prob.Count;
double std = Math.Sqrt(2 * mae * mae);
int count = 0;
mae = 0;
for (i = 0; i < prob.Count; i++)
if (Math.Abs(ymv[i]) > 5 * std)
count = count + 1;
else
mae += Math.Abs(ymv[i]);
mae /= (prob.Count - count);
Debug.Write("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=" + mae + "\n");
return mae;
}
// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
// perm, length l, must be allocated before calling this subroutine
private static void svm_group_classes(Problem prob, int[] nr_class_ret, int[][] label_ret, int[][] start_ret, int[][] count_ret, int[] perm)
{
int l = prob.Count;
int max_nr_class = 16;
int nr_class = 0;
int[] label = new int[max_nr_class];
int[] count = new int[max_nr_class];
int[] data_label = new int[l];
int i;
for (i = 0; i < l; i++)
{
int this_label = (int)(prob.Y[i]);
int j;
for (j = 0; j < nr_class; j++)
{
if (this_label == label[j])
{
++count[j];
break;
}
}
data_label[i] = j;
if (j == nr_class)
{
if (nr_class == max_nr_class)
{
max_nr_class *= 2;
int[] new_data = new int[max_nr_class];
Array.Copy(label, 0, new_data, 0, label.Length);
label = new_data;
new_data = new int[max_nr_class];
Array.Copy(count, 0, new_data, 0, count.Length);
count = new_data;
}
label[nr_class] = this_label;
count[nr_class] = 1;
++nr_class;
}
}
int[] start = new int[nr_class];
start[0] = 0;
for (i = 1; i < nr_class; i++)
start[i] = start[i - 1] + count[i - 1];
for (i = 0; i < l; i++)
{
perm[start[data_label[i]]] = i;
++start[data_label[i]];
}
start[0] = 0;
for (i = 1; i < nr_class; i++)
start[i] = start[i - 1] + count[i - 1];
nr_class_ret[0] = nr_class;
label_ret[0] = label;
start_ret[0] = start;
count_ret[0] = count;
}
//
// Interface functions
//
public static Model svm_train(Problem prob, Parameter param)
{
Model model = new Model();
model.Parameter = param;
if (param.SvmType == SvmType.ONE_CLASS ||
param.SvmType == SvmType.EPSILON_SVR ||
param.SvmType == SvmType.NU_SVR)
{
// regression or one-class-svm
model.NumberOfClasses = 2;
model.ClassLabels = null;
model.NumberOfSVPerClass = null;
model.PairwiseProbabilityA = null; model.PairwiseProbabilityB = null;
model.SupportVectorCoefficients = new double[1][];
if (param.Probability &&
(param.SvmType == SvmType.EPSILON_SVR ||
param.SvmType == SvmType.NU_SVR))
{
model.PairwiseProbabilityA = new double[1];
model.PairwiseProbabilityA[0] = svm_svr_probability(prob, param);
}
decision_function f = svm_train_one(prob, param, 0, 0);
model.Rho = new double[1];
model.Rho[0] = f.rho;
int nSV = 0;
int i;
for (i = 0; i < prob.Count; i++)
if (Math.Abs(f.alpha[i]) > 0) ++nSV;
model.SupportVectorCount = nSV;
model.SupportVectors = new Node[nSV][];
model.SupportVectorCoefficients[0] = new double[nSV];
int j = 0;
for (i = 0; i < prob.Count; i++)
if (Math.Abs(f.alpha[i]) > 0)
{
model.SupportVectors[j] = prob.X[i];
model.SupportVectorCoefficients[0][j] = f.alpha[i];
++j;
}
}
else
{
// classification
int l = prob.Count;
int[] tmp_nr_class = new int[1];
int[][] tmp_label = new int[1][];
int[][] tmp_start = new int[1][];
int[][] tmp_count = new int[1][];
int[] perm = new int[l];
// group training data of the same class
svm_group_classes(prob, tmp_nr_class, tmp_label, tmp_start, tmp_count, perm);
int nr_class = tmp_nr_class[0];
int[] label = tmp_label[0];
int[] start = tmp_start[0];
int[] count = tmp_count[0];
Node[][] x = new Node[l][];
int i;
for (i = 0; i < l; i++)
x[i] = prob.X[perm[i]];
// calculate weighted C
double[] weighted_C = new double[nr_class];
for (i = 0; i < nr_class; i++)
weighted_C[i] = param.C;
for (i = 0; i < param.WeightCount; i++)
{
int j;
for (j = 0; j < nr_class; j++)
if (param.WeightLabels[i] == label[j])
break;
if (j == nr_class)
Debug.Write("warning: class label " + param.WeightLabels[i] + " specified in weight is not found\n");
else
weighted_C[j] *= param.Weights[i];
}
// train k*(k-1)/2 models
bool[] nonzero = new bool[l];
for (i = 0; i < l; i++)
nonzero[i] = false;
decision_function[] f = new decision_function[nr_class * (nr_class - 1) / 2];
double[] probA = null, probB = null;
if (param.Probability)
{
probA = new double[nr_class * (nr_class - 1) / 2];
probB = new double[nr_class * (nr_class - 1) / 2];
}
int p = 0;
for (i = 0; i < nr_class; i++)
for (int j = i + 1; j < nr_class; j++)
{
Problem sub_prob = new Problem();
int si = start[i], sj = start[j];
int ci = count[i], cj = count[j];
sub_prob.Count = ci + cj;
sub_prob.X = new Node[sub_prob.Count][];
sub_prob.Y = new double[sub_prob.Count];
int k;
for (k = 0; k < ci; k++)
{
sub_prob.X[k] = x[si + k];
sub_prob.Y[k] = +1;
}
for (k = 0; k < cj; k++)
{
sub_prob.X[ci + k] = x[sj + k];
sub_prob.Y[ci + k] = -1;
}
if (param.Probability)
{
double[] probAB = new double[2];
svm_binary_svc_probability(sub_prob, param, weighted_C[i], weighted_C[j], probAB);
probA[p] = probAB[0];
probB[p] = probAB[1];
}
f[p] = svm_train_one(sub_prob, param, weighted_C[i], weighted_C[j]);
for (k = 0; k < ci; k++)
if (!nonzero[si + k] && Math.Abs(f[p].alpha[k]) > 0)
nonzero[si + k] = true;
for (k = 0; k < cj; k++)
if (!nonzero[sj + k] && Math.Abs(f[p].alpha[ci + k]) > 0)
nonzero[sj + k] = true;
++p;
}
// build output
model.NumberOfClasses = nr_class;
model.ClassLabels = new int[nr_class];
for (i = 0; i < nr_class; i++)
model.ClassLabels[i] = label[i];
model.Rho = new double[nr_class * (nr_class - 1) / 2];
for (i = 0; i < nr_class * (nr_class - 1) / 2; i++)
model.Rho[i] = f[i].rho;
if (param.Probability)
{
model.PairwiseProbabilityA = new double[nr_class * (nr_class - 1) / 2];
model.PairwiseProbabilityB = new double[nr_class * (nr_class - 1) / 2];
for (i = 0; i < nr_class * (nr_class - 1) / 2; i++)
{
model.PairwiseProbabilityA[i] = probA[i];
model.PairwiseProbabilityB[i] = probB[i];
}
}
else
{
model.PairwiseProbabilityA = null;
model.PairwiseProbabilityB = null;
}
int nnz = 0;
int[] nz_count = new int[nr_class];
model.NumberOfSVPerClass = new int[nr_class];
for (i = 0; i < nr_class; i++)
{
int nSV = 0;
for (int j = 0; j < count[i]; j++)
if (nonzero[start[i] + j])
{
++nSV;
++nnz;
}
model.NumberOfSVPerClass[i] = nSV;
nz_count[i] = nSV;
}
Debug.Write("Total nSV = " + nnz + "\n");
model.SupportVectorCount = nnz;
model.SupportVectors = new Node[nnz][];
p = 0;
for (i = 0; i < l; i++)
if (nonzero[i]) model.SupportVectors[p++] = x[i];
int[] nz_start = new int[nr_class];
nz_start[0] = 0;
for (i = 1; i < nr_class; i++)
nz_start[i] = nz_start[i - 1] + nz_count[i - 1];
model.SupportVectorCoefficients = new double[nr_class - 1][];
for (i = 0; i < nr_class - 1; i++)
model.SupportVectorCoefficients[i] = new double[nnz];
p = 0;
for (i = 0; i < nr_class; i++)
for (int j = i + 1; j < nr_class; j++)
{
// classifier (i,j): coefficients with
// i are in sv_coef[j-1][nz_start[i]...],
// j are in sv_coef[i][nz_start[j]...]
int si = start[i];
int sj = start[j];
int ci = count[i];
int cj = count[j];
int q = nz_start[i];
int k;
for (k = 0; k < ci; k++)
if (nonzero[si + k])
model.SupportVectorCoefficients[j - 1][q++] = f[p].alpha[k];
q = nz_start[j];
for (k = 0; k < cj; k++)
if (nonzero[sj + k])
model.SupportVectorCoefficients[i][q++] = f[p].alpha[ci + k];
++p;
}
}
return model;
}
// Stratified cross validation
public static void svm_cross_validation(Problem prob, Parameter param, int nr_fold, double[] target, Dictionary[] confidence)
{
Random rand = new Random();
int i;
int[] fold_start = new int[nr_fold + 1];
int l = prob.Count;
int[] perm = new int[l];
// stratified cv may not give leave-one-out rate
// Each class to l folds -> some folds may have zero elements
if ((param.SvmType == SvmType.C_SVC ||
param.SvmType == SvmType.NU_SVC) && nr_fold < l)
{
int[] tmp_nr_class = new int[1];
int[][] tmp_label = new int[1][];
int[][] tmp_start = new int[1][];
int[][] tmp_count = new int[1][];
svm_group_classes(prob, tmp_nr_class, tmp_label, tmp_start, tmp_count, perm);
int nr_class = tmp_nr_class[0];
int[] label = tmp_label[0];
int[] start = tmp_start[0];
int[] count = tmp_count[0];
// random shuffle and then data grouped by fold using the array perm
int[] fold_count = new int[nr_fold];
int c;
int[] index = new int[l];
for (i = 0; i < l; i++)
index[i] = perm[i];
for (c = 0; c < nr_class; c++)
for (i = 0; i < count[c]; i++)
{
int j = i + (int)(rand.NextDouble() * (count[c] - i));
do { int _ = index[start[c] + j]; index[start[c] + j] = index[start[c] + i]; index[start[c] + i] = _; } while (false);
}
for (i = 0; i < nr_fold; i++)
{
fold_count[i] = 0;
for (c = 0; c < nr_class; c++)
fold_count[i] += (i + 1) * count[c] / nr_fold - i * count[c] / nr_fold;
}
fold_start[0] = 0;
for (i = 1; i <= nr_fold; i++)
fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
for (c = 0; c < nr_class; c++)
for (i = 0; i < nr_fold; i++)
{
int begin = start[c] + i * count[c] / nr_fold;
int end = start[c] + (i + 1) * count[c] / nr_fold;
for (int j = begin; j < end; j++)
{
perm[fold_start[i]] = index[j];
fold_start[i]++;
}
}
fold_start[0] = 0;
for (i = 1; i <= nr_fold; i++)
fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
}
else
{
for (i = 0; i < l; i++) perm[i] = i;
for (i = 0; i < l; i++)
{
int j = i + (int)(rand.NextDouble() * (l - i));
do { int _ = perm[i]; perm[i] = perm[j]; perm[j] = _; } while (false);
}
for (i = 0; i <= nr_fold; i++)
fold_start[i] = i * l / nr_fold;
}
for (i = 0; i < nr_fold; i++)
{
int begin = fold_start[i];
int end = fold_start[i + 1];
int j, k;
Problem subprob = new Problem();
subprob.Count = l - (end - begin);
subprob.X = new Node[subprob.Count][];
subprob.Y = new double[subprob.Count];
k = 0;
for (j = 0; j < begin; j++)
{
subprob.X[k] = prob.X[perm[j]];
subprob.Y[k] = prob.Y[perm[j]];
++k;
}
for (j = end; j < l; j++)
{
subprob.X[k] = prob.X[perm[j]];
subprob.Y[k] = prob.Y[perm[j]];
++k;
}
Model submodel = svm_train(subprob, param);
if (param.Probability &&
(param.SvmType == SvmType.C_SVC ||
param.SvmType == SvmType.NU_SVC))
{
for (j = begin; j < end; j++)
{
double[] prob_estimates = new double[svm_get_nr_class(submodel)];
target[perm[j]] = svm_predict_probability(submodel, prob.X[perm[j]], prob_estimates);
confidence[perm[j]] = new Dictionary();
for (int label = 0; label < prob_estimates.Length; label++)
confidence[perm[j]][submodel.ClassLabels[label]] = prob_estimates[label];
}
}
else
for (j = begin; j < end; j++)
target[perm[j]] = svm_predict(submodel, prob.X[perm[j]]);
}
}
public static SvmType svm_get_svm_type(Model model)
{
return model.Parameter.SvmType;
}
public static int svm_get_nr_class(Model model)
{
return model.NumberOfClasses;
}
public static void svm_get_labels(Model model, int[] label)
{
if (model.ClassLabels != null)
for (int i = 0; i < model.NumberOfClasses; i++)
label[i] = model.ClassLabels[i];
}
public static double svm_get_svr_probability(Model model)
{
if ((model.Parameter.SvmType == SvmType.EPSILON_SVR || model.Parameter.SvmType == SvmType.NU_SVR) &&
model.PairwiseProbabilityA != null)
return model.PairwiseProbabilityA[0];
else
{
Debug.Write("Model doesn't contain information for SVR probability inference\n");
return 0;
}
}
public static void svm_predict_values(Model model, Node[] x, double[] dec_values)
{
if (model.Parameter.SvmType == SvmType.ONE_CLASS ||
model.Parameter.SvmType == SvmType.EPSILON_SVR ||
model.Parameter.SvmType == SvmType.NU_SVR)
{
double[] sv_coef = model.SupportVectorCoefficients[0];
double sum = 0;
for (int i = 0; i < model.SupportVectorCount; i++)
sum += sv_coef[i] * Kernel.k_function(x, model.SupportVectors[i], model.Parameter);
sum -= model.Rho[0];
dec_values[0] = sum;
}
else
{
int i;
int nr_class = model.NumberOfClasses;
int l = model.SupportVectorCount;
double[] kvalue = new double[l];
for (i = 0; i < l; i++)
kvalue[i] = Kernel.k_function(x, model.SupportVectors[i], model.Parameter);
int[] start = new int[nr_class];
start[0] = 0;
for (i = 1; i < nr_class; i++)
start[i] = start[i - 1] + model.NumberOfSVPerClass[i - 1];
int p = 0;
for (i = 0; i < nr_class; i++)
for (int j = i + 1; j < nr_class; j++)
{
double sum = 0;
int si = start[i];
int sj = start[j];
int ci = model.NumberOfSVPerClass[i];
int cj = model.NumberOfSVPerClass[j];
int k;
double[] coef1 = model.SupportVectorCoefficients[j - 1];
double[] coef2 = model.SupportVectorCoefficients[i];
for (k = 0; k < ci; k++)
sum += coef1[si + k] * kvalue[si + k];
for (k = 0; k < cj; k++)
sum += coef2[sj + k] * kvalue[sj + k];
sum -= model.Rho[p];
dec_values[p] = sum;
p++;
}
}
}
public static double svm_predict(Model model, Node[] x)
{
if (model.Parameter.SvmType == SvmType.ONE_CLASS ||
model.Parameter.SvmType == SvmType.EPSILON_SVR ||
model.Parameter.SvmType == SvmType.NU_SVR)
{
double[] res = new double[1];
svm_predict_values(model, x, res);
if (model.Parameter.SvmType == SvmType.ONE_CLASS)
return (res[0] > 0) ? 1 : -1;
else
return res[0];
}
else
{
int i;
int nr_class = model.NumberOfClasses;
double[] dec_values = new double[nr_class * (nr_class - 1) / 2];
svm_predict_values(model, x, dec_values);
int[] vote = new int[nr_class];
for (i = 0; i < nr_class; i++)
vote[i] = 0;
int pos = 0;
for (i = 0; i < nr_class; i++)
for (int j = i + 1; j < nr_class; j++)
{
if (dec_values[pos++] > 0)
++vote[i];
else
++vote[j];
}
int vote_max_idx = 0;
for (i = 1; i < nr_class; i++)
if (vote[i] > vote[vote_max_idx])
vote_max_idx = i;
return model.ClassLabels[vote_max_idx];
}
}
public static double svm_predict_probability(Model model, Node[] x, double[] prob_estimates)
{
if ((model.Parameter.SvmType == SvmType.C_SVC || model.Parameter.SvmType == SvmType.NU_SVC) &&
model.PairwiseProbabilityA!=null && model.PairwiseProbabilityB!=null)
{
int i;
int nr_class = model.NumberOfClasses;
double[] dec_values = new double[nr_class*(nr_class-1)/2];
svm_predict_values(model, x, dec_values);
double min_prob=1e-7;
double[,] pairwise_prob=new double[nr_class,nr_class];
int k=0;
for(i=0;i prob_estimates[prob_max_idx])
prob_max_idx = i;
return model.ClassLabels[prob_max_idx];
}
else
return svm_predict(model, x);
}
private static double atof(string s)
{
return double.Parse(s);
}
private static int atoi(string s)
{
return int.Parse(s);
}
public static string svm_check_parameter(Problem prob, Parameter param)
{
// svm_type
SvmType svm_type = param.SvmType;
if (svm_type != SvmType.C_SVC &&
svm_type != SvmType.NU_SVC &&
svm_type != SvmType.ONE_CLASS &&
svm_type != SvmType.EPSILON_SVR &&
svm_type != SvmType.NU_SVR)
return "unknown svm type";
// kernel_type, degree
KernelType kernel_type = param.KernelType;
if (kernel_type != KernelType.LINEAR &&
kernel_type != KernelType.POLY &&
kernel_type != KernelType.RBF &&
kernel_type != KernelType.SIGMOID &&
kernel_type != KernelType.PRECOMPUTED)
return "unknown kernel type";
if (param.Degree < 0)
return "degree of polynomial kernel < 0";
// cache_size,eps,C,nu,p,shrinking
if (param.CacheSize <= 0)
return "cache_size <= 0";
if (param.EPS <= 0)
return "eps <= 0";
if (svm_type == SvmType.C_SVC ||
svm_type == SvmType.EPSILON_SVR ||
svm_type == SvmType.NU_SVR)
if (param.C <= 0)
return "C <= 0";
if (svm_type == SvmType.NU_SVC ||
svm_type == SvmType.ONE_CLASS ||
svm_type == SvmType.NU_SVR)
if (param.Nu <= 0 || param.Nu > 1)
return "nu <= 0 or nu > 1";
if (svm_type == SvmType.EPSILON_SVR)
if (param.P < 0)
return "p < 0";
if (param.Probability && svm_type == SvmType.ONE_CLASS)
return "one-class SVM probability output not supported yet";
// check whether nu-svc is feasible
if (svm_type == SvmType.NU_SVC)
{
int l = prob.Count;
int max_nr_class = 16;
int nr_class = 0;
int[] label = new int[max_nr_class];
int[] count = new int[max_nr_class];
int i;
for (i = 0; i < l; i++)
{
int this_label = (int)prob.Y[i];
int j;
for (j = 0; j < nr_class; j++)
if (this_label == label[j])
{
++count[j];
break;
}
if (j == nr_class)
{
if (nr_class == max_nr_class)
{
max_nr_class *= 2;
int[] new_data = new int[max_nr_class];
Array.Copy(label, 0, new_data, 0, label.Length);
label = new_data;
new_data = new int[max_nr_class];
Array.Copy(count, 0, new_data, 0, count.Length);
count = new_data;
}
label[nr_class] = this_label;
count[nr_class] = 1;
++nr_class;
}
}
for (i = 0; i < nr_class; i++)
{
int n1 = count[i];
for (int j = i + 1; j < nr_class; j++)
{
int n2 = count[j];
if (param.Nu * (n1 + n2) / 2 > Math.Min(n1, n2))
return "specified nu is infeasible";
}
}
}
return null;
}
public static int svm_check_probability_model(Model model)
{
if (((model.Parameter.SvmType == SvmType.C_SVC || model.Parameter.SvmType == SvmType.NU_SVC) &&
model.PairwiseProbabilityA != null && model.PairwiseProbabilityB != null) ||
((model.Parameter.SvmType == SvmType.EPSILON_SVR || model.Parameter.SvmType == SvmType.NU_SVR) &&
model.PairwiseProbabilityA != null))
return 1;
else
return 0;
}
}
}