1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.DataAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Modeling {
|
---|
31 | /// <summary>
|
---|
32 | /// The Variance Accounted For (VAF) function calculates is computed as
|
---|
33 | /// VAF(y,y') = ( 1 - var(y-y')/var(y) )
|
---|
34 | /// where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.
|
---|
35 | /// </summary>
|
---|
36 | public class SimpleVarianceAccountedForEvaluator : SimpleEvaluatorBase {
|
---|
37 |
|
---|
38 | public override string OutputVariableName {
|
---|
39 | get {
|
---|
40 | return "VAF";
|
---|
41 | }
|
---|
42 | }
|
---|
43 |
|
---|
44 | public override double Evaluate(double[,] values) {
|
---|
45 | try {
|
---|
46 | return Calculate(values);
|
---|
47 | }
|
---|
48 | catch (ArgumentException) {
|
---|
49 | return double.NegativeInfinity;
|
---|
50 | }
|
---|
51 | }
|
---|
52 |
|
---|
53 | public static double Calculate(double[,] values) {
|
---|
54 | int n = values.GetLength(0);
|
---|
55 | double[] errors = new double[n];
|
---|
56 | double[] originalTargetVariableValues = new double[n];
|
---|
57 | for (int i = 0; i < n; i++) {
|
---|
58 | double estimated = values[i, 0];
|
---|
59 | double original = values[i, 1];
|
---|
60 | if (!double.IsNaN(estimated) && !double.IsInfinity(estimated) &&
|
---|
61 | !double.IsNaN(original) && !double.IsInfinity(original)) {
|
---|
62 | errors[i] = original - estimated;
|
---|
63 | originalTargetVariableValues[i] = original;
|
---|
64 | } else {
|
---|
65 | errors[i] = double.NaN;
|
---|
66 | originalTargetVariableValues[i] = double.NaN;
|
---|
67 | }
|
---|
68 | }
|
---|
69 | double errorsVariance = Statistics.Variance(errors);
|
---|
70 | double originalsVariance = Statistics.Variance(originalTargetVariableValues);
|
---|
71 | if (IsAlmost(originalsVariance, 0.0))
|
---|
72 | if (IsAlmost(errorsVariance, 0.0)) {
|
---|
73 | return 1.0;
|
---|
74 | } else {
|
---|
75 | throw new ArgumentException("Variance of original values is zero");
|
---|
76 | } else {
|
---|
77 | return 1.0 - errorsVariance / originalsVariance;
|
---|
78 | }
|
---|
79 | }
|
---|
80 | }
|
---|
81 | }
|
---|