1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Text;
|
---|
25 | using System.Xml;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.DataAnalysis;
|
---|
29 | using System.Linq;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Modeling {
|
---|
32 | public class ProblemInjector : OperatorBase {
|
---|
33 | public override string Description {
|
---|
34 | get { return @"Injects the necessary variables for a data-based modeling problem."; }
|
---|
35 | }
|
---|
36 |
|
---|
37 | public ProblemInjector()
|
---|
38 | : base() {
|
---|
39 | AddVariableInfo(new VariableInfo("Dataset", "Dataset", typeof(Dataset), VariableKind.New));
|
---|
40 | GetVariableInfo("Dataset").Local = true;
|
---|
41 | AddVariable(new Variable("Dataset", new Dataset()));
|
---|
42 |
|
---|
43 | AddVariableInfo(new VariableInfo("TargetVariable", "TargetVariable", typeof(IntData), VariableKind.New));
|
---|
44 | GetVariableInfo("TargetVariable").Local = true;
|
---|
45 | AddVariable(new Variable("TargetVariable", new IntData()));
|
---|
46 |
|
---|
47 | AddVariableInfo(new VariableInfo("AllowedFeatures", "Indexes of allowed input variables", typeof(ItemList<IntData>), VariableKind.New));
|
---|
48 | GetVariableInfo("AllowedFeatures").Local = true;
|
---|
49 | AddVariable(new Variable("AllowedFeatures", new ItemList<IntData>()));
|
---|
50 |
|
---|
51 | AddVariableInfo(new VariableInfo("TrainingSamplesStart", "TrainingSamplesStart", typeof(IntData), VariableKind.New));
|
---|
52 | GetVariableInfo("TrainingSamplesStart").Local = true;
|
---|
53 | AddVariable(new Variable("TrainingSamplesStart", new IntData()));
|
---|
54 |
|
---|
55 | AddVariableInfo(new VariableInfo("TrainingSamplesEnd", "TrainingSamplesEnd", typeof(IntData), VariableKind.New));
|
---|
56 | GetVariableInfo("TrainingSamplesEnd").Local = true;
|
---|
57 | AddVariable(new Variable("TrainingSamplesEnd", new IntData()));
|
---|
58 |
|
---|
59 | AddVariableInfo(new VariableInfo("ActualTrainingSamplesStart", "ActualTrainingSamplesStart", typeof(IntData), VariableKind.New));
|
---|
60 | AddVariableInfo(new VariableInfo("ActualTrainingSamplesEnd", "ActualTrainingSamplesEnd", typeof(IntData), VariableKind.New));
|
---|
61 |
|
---|
62 | AddVariableInfo(new VariableInfo("ValidationSamplesStart", "ValidationSamplesStart", typeof(IntData), VariableKind.New));
|
---|
63 | GetVariableInfo("ValidationSamplesStart").Local = true;
|
---|
64 | AddVariable(new Variable("ValidationSamplesStart", new IntData()));
|
---|
65 |
|
---|
66 | AddVariableInfo(new VariableInfo("ValidationSamplesEnd", "ValidationSamplesEnd", typeof(IntData), VariableKind.New));
|
---|
67 | GetVariableInfo("ValidationSamplesEnd").Local = true;
|
---|
68 | AddVariable(new Variable("ValidationSamplesEnd", new IntData()));
|
---|
69 |
|
---|
70 | AddVariableInfo(new VariableInfo("TestSamplesStart", "TestSamplesStart", typeof(IntData), VariableKind.New));
|
---|
71 | GetVariableInfo("TestSamplesStart").Local = true;
|
---|
72 | AddVariable(new Variable("TestSamplesStart", new IntData()));
|
---|
73 |
|
---|
74 | AddVariableInfo(new VariableInfo("TestSamplesEnd", "TestSamplesEnd", typeof(IntData), VariableKind.New));
|
---|
75 | GetVariableInfo("TestSamplesEnd").Local = true;
|
---|
76 | AddVariable(new Variable("TestSamplesEnd", new IntData()));
|
---|
77 |
|
---|
78 | AddVariableInfo(new VariableInfo("MaxNumberOfTrainingSamples", "Maximal number of training samples to use (optional)", typeof(IntData), VariableKind.In));
|
---|
79 | }
|
---|
80 |
|
---|
81 | public override IView CreateView() {
|
---|
82 | return new ProblemInjectorView(this);
|
---|
83 | }
|
---|
84 |
|
---|
85 | public override IOperation Apply(IScope scope) {
|
---|
86 | AddVariableToScope("TrainingSamplesStart", scope);
|
---|
87 | AddVariableToScope("TrainingSamplesEnd", scope);
|
---|
88 | AddVariableToScope("ValidationSamplesStart", scope);
|
---|
89 | AddVariableToScope("ValidationSamplesEnd", scope);
|
---|
90 | AddVariableToScope("TestSamplesStart", scope);
|
---|
91 | AddVariableToScope("TestSamplesEnd", scope);
|
---|
92 |
|
---|
93 | Dataset operatorDataset = (Dataset)GetVariable("Dataset").Value;
|
---|
94 | int targetVariable = ((IntData)GetVariable("TargetVariable").Value).Data;
|
---|
95 | ItemList<IntData> operatorAllowedFeatures = (ItemList<IntData>)GetVariable("AllowedFeatures").Value;
|
---|
96 |
|
---|
97 | Dataset scopeDataset = CreateNewDataset(operatorDataset, targetVariable, operatorAllowedFeatures);
|
---|
98 |
|
---|
99 | ItemList<IntData> allowedFeatures = new ItemList<IntData>();
|
---|
100 | allowedFeatures.AddRange(Enumerable.Range(1, scopeDataset.Columns -1 ).Select(x=>new IntData(x)));
|
---|
101 |
|
---|
102 | scope.AddVariable(new Variable("Dataset", scopeDataset));
|
---|
103 | scope.AddVariable(new Variable("AllowedFeatures", allowedFeatures));
|
---|
104 | scope.AddVariable(new Variable("TargetVariable", new IntData(0)));
|
---|
105 |
|
---|
106 | int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
|
---|
107 | int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
|
---|
108 |
|
---|
109 | var maxTraining = GetVariableValue<IntData>("MaxNumberOfTrainingSamples", scope, true, false);
|
---|
110 | int nTrainingSamples;
|
---|
111 | if (maxTraining != null) {
|
---|
112 | nTrainingSamples = Math.Min(maxTraining.Data, trainingEnd - trainingStart);
|
---|
113 | if (nTrainingSamples <= 0)
|
---|
114 | throw new ArgumentException("Maximal number of training samples must be larger than 0", "MaxNumberOfTrainingSamples");
|
---|
115 | } else {
|
---|
116 | nTrainingSamples = trainingEnd - trainingStart;
|
---|
117 | }
|
---|
118 | scope.AddVariable(new Variable(scope.TranslateName("ActualTrainingSamplesStart"), new IntData(trainingStart)));
|
---|
119 | scope.AddVariable(new Variable(scope.TranslateName("ActualTrainingSamplesEnd"), new IntData(trainingStart + nTrainingSamples)));
|
---|
120 | return null;
|
---|
121 | }
|
---|
122 |
|
---|
123 | private Dataset CreateNewDataset(Dataset operatorDataset, int targetVariable, ItemList<IntData> operatorAllowedFeatures) {
|
---|
124 | int columns = (operatorAllowedFeatures.Count() + 1);
|
---|
125 | double[] values = new double[operatorDataset.Rows * columns];
|
---|
126 |
|
---|
127 | for (int i = 0; i < values.Length; i++) {
|
---|
128 | int row = i / columns;
|
---|
129 | int column = i % columns;
|
---|
130 | if (column == 0) {
|
---|
131 | values[i] = operatorDataset.GetValue(row, targetVariable);
|
---|
132 | } else {
|
---|
133 | values[i] = operatorDataset.GetValue(row, operatorAllowedFeatures[column-1].Data);
|
---|
134 | }
|
---|
135 | }
|
---|
136 |
|
---|
137 | Dataset ds = new Dataset();
|
---|
138 | ds.Columns = columns;
|
---|
139 | ds.Rows = operatorDataset.Rows;
|
---|
140 | ds.Name = operatorDataset.Name;
|
---|
141 | ds.Samples = values;
|
---|
142 | double[] scalingFactor = new double[columns];
|
---|
143 | double[] scalingOffset = new double[columns];
|
---|
144 | ds.SetVariableName(0, operatorDataset.GetVariableName(targetVariable));
|
---|
145 | scalingFactor[0] = operatorDataset.ScalingFactor[targetVariable];
|
---|
146 | scalingOffset[0] = operatorDataset.ScalingOffset[targetVariable];
|
---|
147 | for (int column = 1; column < columns; column++) {
|
---|
148 | ds.SetVariableName(column, operatorDataset.GetVariableName(operatorAllowedFeatures[column - 1].Data));
|
---|
149 | scalingFactor[column] = operatorDataset.ScalingFactor[operatorAllowedFeatures[column - 1].Data];
|
---|
150 | scalingOffset[column] = operatorDataset.ScalingOffset[operatorAllowedFeatures[column - 1].Data];
|
---|
151 | }
|
---|
152 | ds.ScalingOffset = scalingOffset;
|
---|
153 | ds.ScalingFactor = scalingFactor;
|
---|
154 | return ds;
|
---|
155 | }
|
---|
156 |
|
---|
157 | private void AddVariableToScope(string variableName, IScope scope) {
|
---|
158 | scope.AddVariable(new Variable(variableName, (IItem)GetVariable(variableName).Value.Clone()));
|
---|
159 | }
|
---|
160 | }
|
---|
161 | }
|
---|