#region License Information
/* HeuristicLab
* Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.IO;
using System.Linq;
using HeuristicLab.Algorithms.LocalSearch;
using HeuristicLab.Data;
using HeuristicLab.Encodings.BinaryVectorEncoding;
using HeuristicLab.Persistence.Default.Xml;
using HeuristicLab.Problems.Knapsack;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace HeuristicLab.Tests {
[TestClass]
public class LocalSearchKnapsackSampleTest {
private const string SampleFileName = "LS_Knapsack";
[TestMethod]
[TestCategory("Samples.Create")]
[TestProperty("Time", "medium")]
public void CreateLocalSearchKnapsackSampleTest() {
var ls = CreateLocalSearchKnapsackSample();
string path = Path.Combine(SamplesUtils.SamplesDirectory, SampleFileName + SamplesUtils.SampleFileExtension);
XmlGenerator.Serialize(ls, path);
}
[TestMethod]
[TestCategory("Samples.Execute")]
[TestProperty("Time", "medium")]
public void RunLocalSearchKnapsackSampleTest() {
var ls = CreateLocalSearchKnapsackSample();
ls.SetSeedRandomly.Value = false;
SamplesUtils.RunAlgorithm(ls);
Assert.AreEqual(345, SamplesUtils.GetDoubleResult(ls, "BestQuality"));
Assert.AreEqual(340.70731707317071, SamplesUtils.GetDoubleResult(ls, "CurrentAverageQuality"));
Assert.AreEqual(337, SamplesUtils.GetDoubleResult(ls, "CurrentWorstQuality"));
Assert.AreEqual(82000, SamplesUtils.GetIntResult(ls, "EvaluatedMoves"));
}
private LocalSearch CreateLocalSearchKnapsackSample() {
LocalSearch ls = new LocalSearch();
#region Problem Configuration
KnapsackProblem problem = new KnapsackProblem();
problem.BestKnownQuality = new DoubleValue(362);
problem.BestKnownSolution = new HeuristicLab.Encodings.BinaryVectorEncoding.BinaryVector(new bool[] {
true , false, false, true , true , true , true , true , false, true , true , true , true , true , true , false, true , false, true , true , false, true , true , false, true , false, true , true , true , false, true , true , false, true , true , false, true , false, true , true , true , true , true , true , true , true , true , true , true , true , true , false, true , false, false, true , true , false, true , true , true , true , true , true , true , true , false, true , false, true , true , true , true , false, true , true , true , true , true , true , true , true});
problem.EvaluatorParameter.Value = new KnapsackEvaluator();
problem.SolutionCreatorParameter.Value = new RandomBinaryVectorCreator();
problem.KnapsackCapacity.Value = 297;
problem.Maximization.Value = true;
problem.Penalty.Value = 1;
problem.Values = new IntArray(new int[] {
6, 1, 1, 6, 7, 8, 7, 4, 2, 5, 2, 6, 7, 8, 7, 1, 7, 1, 9, 4, 2, 6, 5, 3, 5, 3, 3, 6, 5, 2, 4, 9, 4, 5, 7, 1, 4, 3, 5, 5, 8, 3, 6, 7, 3, 9, 7, 7, 5, 5, 7, 1, 4, 4, 3, 9, 5, 1, 6, 2, 2, 6, 1, 6, 5, 4, 4, 7, 1, 8, 9, 9, 7, 4, 3, 8, 7, 5, 7, 4, 4, 5});
problem.Weights = new IntArray(new int[] {
1, 9, 3, 6, 5, 3, 8, 1, 7, 4, 2, 1, 2, 7, 9, 9, 8, 4, 9, 2, 4, 8, 3, 7, 5, 7, 5, 5, 1, 9, 8, 7, 8, 9, 1, 3, 3, 8, 8, 5, 1, 2, 4, 3, 6, 9, 4, 4, 9, 7, 4, 5, 1, 9, 7, 6, 7, 4, 7, 1, 2, 1, 2, 9, 8, 6, 8, 4, 7, 6, 7, 5, 3, 9, 4, 7, 4, 6, 1, 2, 5, 4});
problem.Name = "Knapsack Problem";
problem.Description = "Represents a Knapsack problem.";
#endregion
#region Algorithm Configuration
ls.Name = "Local Search - Knapsack";
ls.Description = "A local search algorithm that solves a randomly generated Knapsack problem";
ls.Problem = problem;
ls.MaximumIterations.Value = 1000;
ls.MoveEvaluator = ls.MoveEvaluatorParameter.ValidValues
.OfType()
.Single();
ls.MoveGenerator = ls.MoveGeneratorParameter.ValidValues
.OfType()
.Single();
ls.MoveMaker = ls.MoveMakerParameter.ValidValues
.OfType()
.Single();
ls.SampleSize.Value = 100;
ls.Seed.Value = 0;
ls.SetSeedRandomly.Value = true;
#endregion
ls.Engine = new ParallelEngine.ParallelEngine();
return ls;
}
}
}