#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Problems.Instances.DataAnalysis {
public class FeatureSelectionRegressionProblemData : RegressionProblemData {
private const string SelectedFeaturesParameterName = "SelectedFeatures";
private const string WeightsParameterName = "Weights";
private const string OptimalRSquaredParameterName = "R² (best solution)";
public IValueParameter SelectedFeaturesParameter {
get { return (IValueParameter)Parameters[SelectedFeaturesParameterName]; }
}
public IValueParameter WeightsParameter {
get { return (IValueParameter)Parameters[WeightsParameterName]; }
}
public IValueParameter OptimalRSquaredParameter {
get { return (IValueParameter)Parameters[OptimalRSquaredParameterName]; }
}
[StorableConstructor]
protected FeatureSelectionRegressionProblemData(bool deserializing)
: base(deserializing) {
}
protected FeatureSelectionRegressionProblemData(FeatureSelectionRegressionProblemData original, Cloner cloner)
: base(original, cloner) {
}
public FeatureSelectionRegressionProblemData(IDataset ds, IEnumerable allowedInputVariables, string targetVariable, string[] selectedFeatures, double[] weights, double optimalRSquared)
: base(ds, allowedInputVariables, targetVariable) {
if (selectedFeatures.Length != weights.Length) throw new ArgumentException("Length of selected features vector does not match the length of the weights vector");
if (optimalRSquared < 0 || optimalRSquared > 1) throw new ArgumentException("Optimal R² is not in range [0..1]");
Parameters.Add(new FixedValueParameter(
SelectedFeaturesParameterName,
"Array of features used to generate the target values.",
new StringArray(selectedFeatures).AsReadOnly()));
Parameters.Add(new FixedValueParameter(
WeightsParameterName,
"Array of weights used to generate the target values.",
(DoubleArray)(new DoubleArray(weights).AsReadOnly())));
Parameters.Add(new FixedValueParameter(
OptimalRSquaredParameterName,
"R² of the optimal solution.",
(DoubleValue)(new DoubleValue(optimalRSquared).AsReadOnly())));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new FeatureSelectionRegressionProblemData(this, cloner);
}
}
}