#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*
* Author: Sabine Winkler
*/
#endregion
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.IntegerVectorEncoding;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Random;
namespace HeuristicLab.Problems.GrammaticalEvolution {
///
/// RandomMapper
///
[Item("RandomMapper", "Randomly determines the next non-terminal symbol to expand.")]
[StorableClass]
public class RandomMapper : GenotypeToPhenotypeMapper {
[StorableConstructor]
protected RandomMapper(bool deserializing) : base(deserializing) { }
protected RandomMapper(RandomMapper original, Cloner cloner) : base(original, cloner) { }
public RandomMapper() : base() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new RandomMapper(this, cloner);
}
///
/// Maps a genotype (an integer vector) to a phenotype (a symbolic expression tree).
/// Random approach.
///
/// random number generator
/// only used for PIGEMapper (ignore here)
/// only used for PIGEMapper (ignore here)
/// grammar definition
/// integer vector, which should be mapped to a tree
/// phenotype (a symbolic expression tree)
public override SymbolicExpressionTree Map(IRandom random, IntMatrix bounds, int length,
ISymbolicExpressionGrammar grammar,
IntegerVector genotype) {
SymbolicExpressionTree tree = new SymbolicExpressionTree();
var rootNode = (SymbolicExpressionTreeTopLevelNode)grammar.ProgramRootSymbol.CreateTreeNode();
var startNode = (SymbolicExpressionTreeTopLevelNode)grammar.StartSymbol.CreateTreeNode();
rootNode.AddSubtree(startNode);
tree.Root = rootNode;
MapRandomIteratively(startNode, genotype, grammar,
genotype.Length, random);
return tree;
}
///
/// Genotype-to-Phenotype mapper (iterative random approach, where the next non-terminal
/// symbol to expand is randomly determined).
///
/// first node of the tree with arity 1
/// integer vector, which should be mapped to a tree
/// grammar to determine the allowed child symbols for each node
/// maximum allowed subtrees (= number of used genomes)
/// random number generator
private void MapRandomIteratively(ISymbolicExpressionTreeNode startNode,
IntegerVector genotype,
ISymbolicExpressionGrammar grammar,
int maxSubtreeCount, IRandom random) {
List nonTerminals = new List();
int genotypeIndex = 0;
nonTerminals.Add(startNode);
while (nonTerminals.Count > 0) {
if (genotypeIndex >= maxSubtreeCount) {
// if all genomes were used, only add terminal nodes to the remaining subtrees
ISymbolicExpressionTreeNode current = nonTerminals[0];
nonTerminals.RemoveAt(0);
current.AddSubtree(GetRandomTerminalNode(current, grammar, random));
} else {
// similar to PIGEMapper, but here the current node is determined randomly ...
ISymbolicExpressionTreeNode current = nonTerminals.SampleRandom(random);
nonTerminals.Remove(current);
ISymbolicExpressionTreeNode newNode = GetNewChildNode(current, genotype, grammar, genotypeIndex, random);
int arity = SampleArity(random, newNode, grammar);
current.AddSubtree(newNode);
genotypeIndex++;
// new node has subtrees, so add "arity" number of copies of this node to the nonTerminals list
for (int i = 0; i < arity; ++i) {
nonTerminals.Add(newNode);
}
}
}
}
}
}