#region License Information /* HeuristicLab * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { /// /// Represents a symbolic regression solution (model + data) and attributes of the solution like accuracy and complexity /// [StorableClass] [Item(Name = "SymbolicRegressionSolution", Description = "Represents a symbolic regression solution (model + data) and attributes of the solution like accuracy and complexity.")] public sealed class SymbolicRegressionSolution : RegressionSolution, ISymbolicRegressionSolution { private const string ModelLengthResultName = "Model Length"; private const string ModelDepthResultName = "Model Depth"; private const string EstimationLimitsResultsResultName = "Estimation Limits Results"; private const string EstimationLimitsResultName = "Estimation Limits"; private const string TrainingUpperEstimationLimitHitsResultName = "Training Upper Estimation Limit Hits"; private const string TestLowerEstimationLimitHitsResultName = "Test Lower Estimation Limit Hits"; private const string TrainingLowerEstimationLimitHitsResultName = "Training Lower Estimation Limit Hits"; private const string TestUpperEstimationLimitHitsResultName = "Test Upper Estimation Limit Hits"; private const string TrainingNaNEvaluationsResultName = "Training NaN Evaluations"; private const string TestNaNEvaluationsResultName = "Test NaN Evaluations"; public new ISymbolicRegressionModel Model { get { return (ISymbolicRegressionModel)base.Model; } set { base.Model = value; } } ISymbolicDataAnalysisModel ISymbolicDataAnalysisSolution.Model { get { return (ISymbolicDataAnalysisModel)base.Model; } } public int ModelLength { get { return ((IntValue)this[ModelLengthResultName].Value).Value; } private set { ((IntValue)this[ModelLengthResultName].Value).Value = value; } } public int ModelDepth { get { return ((IntValue)this[ModelDepthResultName].Value).Value; } private set { ((IntValue)this[ModelDepthResultName].Value).Value = value; } } private ResultCollection EstimationLimitsResultCollection { get { return (ResultCollection)this[EstimationLimitsResultsResultName].Value; } } public DoubleLimit EstimationLimits { get { return (DoubleLimit)EstimationLimitsResultCollection[EstimationLimitsResultName].Value; } } public int TrainingUpperEstimationLimitHits { get { return ((IntValue)EstimationLimitsResultCollection[TrainingUpperEstimationLimitHitsResultName].Value).Value; } private set { ((IntValue)EstimationLimitsResultCollection[TrainingUpperEstimationLimitHitsResultName].Value).Value = value; } } public int TestUpperEstimationLimitHits { get { return ((IntValue)EstimationLimitsResultCollection[TestUpperEstimationLimitHitsResultName].Value).Value; } private set { ((IntValue)EstimationLimitsResultCollection[TestUpperEstimationLimitHitsResultName].Value).Value = value; } } public int TrainingLowerEstimationLimitHits { get { return ((IntValue)EstimationLimitsResultCollection[TrainingLowerEstimationLimitHitsResultName].Value).Value; } private set { ((IntValue)EstimationLimitsResultCollection[TrainingLowerEstimationLimitHitsResultName].Value).Value = value; } } public int TestLowerEstimationLimitHits { get { return ((IntValue)EstimationLimitsResultCollection[TestLowerEstimationLimitHitsResultName].Value).Value; } private set { ((IntValue)EstimationLimitsResultCollection[TestLowerEstimationLimitHitsResultName].Value).Value = value; } } public int TrainingNaNEvaluations { get { return ((IntValue)EstimationLimitsResultCollection[TrainingNaNEvaluationsResultName].Value).Value; } private set { ((IntValue)EstimationLimitsResultCollection[TrainingNaNEvaluationsResultName].Value).Value = value; } } public int TestNaNEvaluations { get { return ((IntValue)EstimationLimitsResultCollection[TestNaNEvaluationsResultName].Value).Value; } private set { ((IntValue)EstimationLimitsResultCollection[TestNaNEvaluationsResultName].Value).Value = value; } } [StorableConstructor] private SymbolicRegressionSolution(bool deserializing) : base(deserializing) { } private SymbolicRegressionSolution(SymbolicRegressionSolution original, Cloner cloner) : base(original, cloner) { } public SymbolicRegressionSolution(ISymbolicRegressionModel model, IRegressionProblemData problemData) : base(model, problemData) { foreach (var node in model.SymbolicExpressionTree.Root.IterateNodesPrefix().OfType()) node.SetGrammar(null); Add(new Result(ModelLengthResultName, "Length of the symbolic regression model.", new IntValue())); Add(new Result(ModelDepthResultName, "Depth of the symbolic regression model.", new IntValue())); ResultCollection estimationLimitResults = new ResultCollection(); estimationLimitResults.Add(new Result(EstimationLimitsResultName, "", new DoubleLimit())); estimationLimitResults.Add(new Result(TrainingUpperEstimationLimitHitsResultName, "", new IntValue())); estimationLimitResults.Add(new Result(TestUpperEstimationLimitHitsResultName, "", new IntValue())); estimationLimitResults.Add(new Result(TrainingLowerEstimationLimitHitsResultName, "", new IntValue())); estimationLimitResults.Add(new Result(TestLowerEstimationLimitHitsResultName, "", new IntValue())); estimationLimitResults.Add(new Result(TrainingNaNEvaluationsResultName, "", new IntValue())); estimationLimitResults.Add(new Result(TestNaNEvaluationsResultName, "", new IntValue())); Add(new Result(EstimationLimitsResultsResultName, "Results concerning the estimation limits of symbolic regression solution", estimationLimitResults)); RecalculateResults(); } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionSolution(this, cloner); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { if (!ContainsKey(EstimationLimitsResultsResultName)) { ResultCollection estimationLimitResults = new ResultCollection(); estimationLimitResults.Add(new Result(EstimationLimitsResultName, "", new DoubleLimit())); estimationLimitResults.Add(new Result(TrainingUpperEstimationLimitHitsResultName, "", new IntValue())); estimationLimitResults.Add(new Result(TestUpperEstimationLimitHitsResultName, "", new IntValue())); estimationLimitResults.Add(new Result(TrainingLowerEstimationLimitHitsResultName, "", new IntValue())); estimationLimitResults.Add(new Result(TestLowerEstimationLimitHitsResultName, "", new IntValue())); estimationLimitResults.Add(new Result(TrainingNaNEvaluationsResultName, "", new IntValue())); estimationLimitResults.Add(new Result(TestNaNEvaluationsResultName, "", new IntValue())); Add(new Result(EstimationLimitsResultsResultName, "Results concerning the estimation limits of symbolic regression solution", estimationLimitResults)); CalculateResults(); } } protected override void RecalculateResults() { base.RecalculateResults(); CalculateResults(); } private void CalculateResults() { ModelLength = Model.SymbolicExpressionTree.Length; ModelDepth = Model.SymbolicExpressionTree.Depth; EstimationLimits.Lower = Model.LowerEstimationLimit; EstimationLimits.Upper = Model.UpperEstimationLimit; TrainingUpperEstimationLimitHits = EstimatedTrainingValues.Count(x => x.IsAlmost(Model.UpperEstimationLimit)); TestUpperEstimationLimitHits = EstimatedTestValues.Count(x => x.IsAlmost(Model.UpperEstimationLimit)); TrainingLowerEstimationLimitHits = EstimatedTrainingValues.Count(x => x.IsAlmost(Model.LowerEstimationLimit)); TestLowerEstimationLimitHits = EstimatedTestValues.Count(x => x.IsAlmost(Model.LowerEstimationLimit)); TrainingNaNEvaluations = Model.Interpreter.GetSymbolicExpressionTreeValues(Model.SymbolicExpressionTree, ProblemData.Dataset, ProblemData.TrainingIndices).Count(double.IsNaN); TestNaNEvaluations = Model.Interpreter.GetSymbolicExpressionTreeValues(Model.SymbolicExpressionTree, ProblemData.Dataset, ProblemData.TestIndices).Count(double.IsNaN); } } }