#region License Information /* HeuristicLab * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis; namespace HeuristicLab.Algorithms.DataAnalysis.TimeSeries { [Item("Autoregressive Modeling", "Timeseries modeling algorithm that creates AR-N models.")] [Creatable("Data Analysis")] [StorableClass] public class AutoregressiveModeling : FixedDataAnalysisAlgorithm { private const string TimeOffesetParameterName = "Maximum Time Offset"; public IFixedValueParameter TimeOffsetParameter { get { return (IFixedValueParameter)Parameters[TimeOffesetParameterName]; } } public int TimeOffset { get { return TimeOffsetParameter.Value.Value; } set { TimeOffsetParameter.Value.Value = value; } } [StorableConstructor] protected AutoregressiveModeling(bool deserializing) : base(deserializing) { } protected AutoregressiveModeling(AutoregressiveModeling original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new AutoregressiveModeling(this, cloner); } public AutoregressiveModeling() : base() { Parameters.Add(new FixedValueParameter(TimeOffesetParameterName, "The maximum time offset for the model ranging from 1 to infinity.", new IntValue(1))); Problem = new TimeSeriesPrognosisProblem(); } protected override void Run() { double rmsError, cvRmsError; var solution = CreateAutoRegressiveSolution(Problem.ProblemData, TimeOffset, out rmsError, out cvRmsError); Results.Add(new Result("Autoregressive solution", "The autoregressive time series prognosis solution.", solution)); Results.Add(new Result("Root mean square error", "The root of the mean of squared errors of the autoregressive time series prognosis solution on the training set.", new DoubleValue(rmsError))); Results.Add(new Result("Estimated root mean square error (cross-validation)", "The estimated root of the mean of squared errors of the autoregressive time series prognosis solution via cross validation.", new DoubleValue(cvRmsError))); } /// /// Calculates an AR(p) model. For further information see http://en.wikipedia.org/wiki/Autoregressive_model /// /// The problem data which should be used for training /// The parameter p of the AR(p) specifying the maximum time offset [1,infinity] /// The times series autoregressive solution public static ITimeSeriesPrognosisSolution CreateAutoRegressiveSolution(ITimeSeriesPrognosisProblemData problemData, int timeOffset) { double rmsError, cvRmsError; return CreateAutoRegressiveSolution(problemData, timeOffset, out rmsError, out cvRmsError); } private static ITimeSeriesPrognosisSolution CreateAutoRegressiveSolution(ITimeSeriesPrognosisProblemData problemData, int timeOffset, out double rmsError, out double cvRmsError) { string targetVariable = problemData.TargetVariable; double[,] inputMatrix = new double[problemData.TrainingPartition.Size, timeOffset + 1]; var targetValues = problemData.Dataset.GetDoubleValues(targetVariable).ToList(); for (int i = 0, row = problemData.TrainingPartition.Start; i < problemData.TrainingPartition.Size; i++, row++) { for (int col = 0; col < timeOffset; col++) { inputMatrix[i, col] = targetValues[row - col - 1]; } } // set target values in last column for (int i = 0; i < inputMatrix.GetLength(0); i++) inputMatrix[i, timeOffset] = targetValues[i + problemData.TrainingPartition.Start]; if (inputMatrix.Cast().Any(x => double.IsNaN(x) || double.IsInfinity(x))) throw new NotSupportedException("Linear regression does not support NaN or infinity values in the input dataset."); alglib.linearmodel lm = new alglib.linearmodel(); alglib.lrreport ar = new alglib.lrreport(); int nRows = inputMatrix.GetLength(0); int nFeatures = inputMatrix.GetLength(1) - 1; double[] coefficients = new double[nFeatures + 1]; // last coefficient is for the constant int retVal = 1; alglib.lrbuild(inputMatrix, nRows, nFeatures, out retVal, out lm, out ar); if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression solution"); rmsError = ar.rmserror; cvRmsError = ar.cvrmserror; alglib.lrunpack(lm, out coefficients, out nFeatures); ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode()); ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode(); tree.Root.AddSubtree(startNode); ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode(); startNode.AddSubtree(addition); for (int i = 0; i < timeOffset; i++) { LaggedVariableTreeNode node = (LaggedVariableTreeNode)new LaggedVariable().CreateTreeNode(); node.VariableName = targetVariable; node.Weight = coefficients[i]; node.Lag = (i + 1) * -1; addition.AddSubtree(node); } ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode(); cNode.Value = coefficients[coefficients.Length - 1]; addition.AddSubtree(cNode); var interpreter = new SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(problemData.TargetVariable); var model = new SymbolicTimeSeriesPrognosisModel(tree, interpreter); var solution = model.CreateTimeSeriesPrognosisSolution((ITimeSeriesPrognosisProblemData)problemData.Clone()); return solution; } } }