#region License Information /* HeuristicLab * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization.Operators; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { [StorableClass] [Item("SymbolicExpressionTreeMaxCommonSubtreeSimilarityCalculator", "A similarity calculator based on the size of the maximum common subtree between two trees")] public class SymbolicExpressionTreeMaxCommonSubtreeSimilarityCalculator : SingleObjectiveSolutionSimilarityCalculator { [Storable] private readonly SymbolicExpressionTreeNodeEqualityComparer comparer; public bool MatchVariableWeights { get { return comparer.MatchVariableWeights; } set { comparer.MatchVariableWeights = value; } } public bool MatchConstantValues { get { return comparer.MatchConstantValues; } set { comparer.MatchConstantValues = value; } } [StorableConstructor] protected SymbolicExpressionTreeMaxCommonSubtreeSimilarityCalculator(bool deserializing) : base(deserializing) { } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicExpressionTreeMaxCommonSubtreeSimilarityCalculator(this, cloner); } protected SymbolicExpressionTreeMaxCommonSubtreeSimilarityCalculator(SymbolicExpressionTreeMaxCommonSubtreeSimilarityCalculator original, Cloner cloner) : base(original, cloner) { comparer = cloner.Clone(original.comparer); } public SymbolicExpressionTreeMaxCommonSubtreeSimilarityCalculator() { comparer = new SymbolicExpressionTreeNodeEqualityComparer { MatchConstantValues = true, MatchVariableNames = true, MatchVariableWeights = true }; } public SymbolicExpressionTreeMaxCommonSubtreeSimilarityCalculator(bool matchVariableWeights, bool matchConstantValues) { comparer = new SymbolicExpressionTreeNodeEqualityComparer { MatchConstantValues = matchConstantValues, MatchVariableNames = true, MatchVariableWeights = matchVariableWeights }; } public double CalculateSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2) { return MaxCommonSubtreeSimilarity(t1, t2, comparer); } public override double CalculateSolutionSimilarity(IScope leftSolution, IScope rightSolution) { var t1 = leftSolution.Variables[SolutionVariableName].Value as ISymbolicExpressionTree; var t2 = rightSolution.Variables[SolutionVariableName].Value as ISymbolicExpressionTree; if (t1 == null || t2 == null) throw new ArgumentException("Cannot calculate similarity when one of the arguments is null."); return MaxCommonSubtreeSimilarity(t1, t2, comparer); } public static double MaxCommonSubtreeSimilarity(ISymbolicExpressionTree a, ISymbolicExpressionTree b, ISymbolicExpressionTreeNodeSimilarityComparer comparer) { int max = 0; var rootA = a.Root.GetSubtree(0).GetSubtree(0); var rootB = b.Root.GetSubtree(0).GetSubtree(0); foreach (var aa in rootA.IterateNodesBreadth()) { int lenA = aa.GetLength(); if (lenA <= max) continue; foreach (var bb in rootB.IterateNodesBreadth()) { int lenB = bb.GetLength(); if (lenB <= max) continue; int matches = SymbolicExpressionTreeMatching.Match(aa, bb, comparer); if (max < matches) max = matches; } } return 2.0 * max / (rootA.GetLength() + rootB.GetLength()); } } }