#region License Information /* HeuristicLab * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Algorithms.GeneticAlgorithm; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Optimization.Operators; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Selection; namespace HeuristicLab.Algorithms.ALPS { [Item("AlpsGeneticAlgorithmMainLoop", "An ALPS genetic algorithm main loop operator.")] [StorableClass] public sealed class AlpsGeneticAlgorithmMainLoop : AlgorithmOperator { #region Parameter Properties public ILookupParameter MaximumGenerationsParameter { get { return (ILookupParameter)Parameters["MaximumGenerations"]; } } public ILookupParameter AnalyzerParameter { get { return (ILookupParameter)Parameters["Analyzer"]; } } public ILookupParameter LayerAnalyzerParameter { get { return (ILookupParameter)Parameters["LayerAnalyzer"]; } } #endregion public GeneticAlgorithmMainLoop MainOperator { get { return OperatorGraph.Iterate().OfType().First(); } } public EldersEmigrator EldersEmigrator { get { return OperatorGraph.Iterate().OfType().First(); } } public LayerUpdator LayerUpdator { get { return OperatorGraph.Iterate().OfType().First(); } } [StorableConstructor] private AlpsGeneticAlgorithmMainLoop(bool deserializing) : base(deserializing) { } private AlpsGeneticAlgorithmMainLoop(AlpsGeneticAlgorithmMainLoop original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new AlpsGeneticAlgorithmMainLoop(this, cloner); } public AlpsGeneticAlgorithmMainLoop() : base() { Parameters.Add(new LookupParameter("MaximumGenerations", "The maximum number of generations that the algorithm should process.")); Parameters.Add(new LookupParameter("Analyzer", "The operator used to the analyze all individuals.")); Parameters.Add(new LookupParameter("LayerAnalyzer", "The operator used to analyze each layer.")); var variableCreator = new VariableCreator() { Name = "Initialize" }; var initLayerAnalyzerProcessor = new SubScopesProcessor(); var layerVariableCreator = new VariableCreator() { Name = "Initialize Layer" }; var initLayerAnalyzerPlaceholder = new Placeholder() { Name = "LayerAnalyzer (Placeholder)" }; var initAnalyzerPlaceholder = new Placeholder() { Name = "Analyzer (Placeholder)" }; var resultsCollector = new ResultsCollector(); var matingPoolCreator = new MatingPoolCreator() { Name = "Create Mating Pools" }; var matingPoolProcessor = new UniformSubScopesProcessor(); var initializeLayer = new Assigner() { Name = "Reset LayerEvaluatedSolutions" }; var mainOperator = CreatePreparedGeneticAlgorithmMainLoop(); var layerAnalyzerPlaceholder = new Placeholder() { Name = "LayerAnalyzer (Placeholder)" }; var generationsIcrementor = new IntCounter() { Name = "Increment Generations" }; var evaluatedSolutionsReducer = new DataReducer() { Name = "Increment EvaluatedSolutions" }; var eldersEmigrator = new EldersEmigrator() { Name = "Emigrate Elders" }; var layerUpdator = new LayerUpdator(mainOperator) { Name = "Update Layers" }; var analyzerPlaceholder = new Placeholder() { Name = "Analyzer (Placeholder)" }; var generationsComparator = new Comparator() { Name = "Generations >= MaximumGenerations" }; var terminateBranch = new ConditionalBranch() { Name = "Terminate?" }; OperatorGraph.InitialOperator = variableCreator; variableCreator.CollectedValues.Add(new ValueParameter("Generations", new IntValue(0))); variableCreator.CollectedValues.Add(new ValueParameter("GenerationsSinceLastRefresh", new IntValue(0))); variableCreator.CollectedValues.Add(new ValueParameter("OpenLayers", new IntValue(1))); variableCreator.Successor = initLayerAnalyzerProcessor; initLayerAnalyzerProcessor.Operators.Add(layerVariableCreator); initLayerAnalyzerProcessor.Successor = initAnalyzerPlaceholder; layerVariableCreator.CollectedValues.Add(new ValueParameter("LayerEvaluatedSolutions")); layerVariableCreator.CollectedValues.Add(new ValueParameter("Results")); layerVariableCreator.Successor = initLayerAnalyzerPlaceholder; initLayerAnalyzerPlaceholder.OperatorParameter.ActualName = LayerAnalyzerParameter.Name; initLayerAnalyzerPlaceholder.Successor = null; initAnalyzerPlaceholder.OperatorParameter.ActualName = AnalyzerParameter.Name; initAnalyzerPlaceholder.Successor = resultsCollector; resultsCollector.CollectedValues.Add(new LookupParameter("Generations")); resultsCollector.CollectedValues.Add(new ScopeTreeLookupParameter("LayerResults", "Result set for each layer", "Results")); resultsCollector.CollectedValues.Add(new LookupParameter("OpenLayers")); resultsCollector.CopyValue = new BoolValue(false); resultsCollector.Successor = matingPoolCreator; matingPoolCreator.Successor = matingPoolProcessor; matingPoolProcessor.Parallel.Value = true; matingPoolProcessor.Operator = initializeLayer; matingPoolProcessor.Successor = generationsIcrementor; initializeLayer.LeftSideParameter.ActualName = "LayerEvaluatedSolutions"; initializeLayer.RightSideParameter.Value = new IntValue(0); initializeLayer.Successor = mainOperator; generationsIcrementor.ValueParameter.ActualName = "Generations"; generationsIcrementor.Increment = new IntValue(1); generationsIcrementor.Successor = evaluatedSolutionsReducer; evaluatedSolutionsReducer.ParameterToReduce.ActualName = "LayerEvaluatedSolutions"; evaluatedSolutionsReducer.TargetParameter.ActualName = "EvaluatedSolutions"; evaluatedSolutionsReducer.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Sum); evaluatedSolutionsReducer.TargetOperation.Value = new ReductionOperation(ReductionOperations.Sum); evaluatedSolutionsReducer.Successor = eldersEmigrator; mainOperator.Successor = layerAnalyzerPlaceholder; layerAnalyzerPlaceholder.OperatorParameter.ActualName = LayerAnalyzerParameter.Name; layerAnalyzerPlaceholder.Successor = null; eldersEmigrator.Successor = layerUpdator; layerUpdator.Successor = analyzerPlaceholder; analyzerPlaceholder.OperatorParameter.ActualName = AnalyzerParameter.Name; analyzerPlaceholder.Successor = generationsComparator; generationsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual); generationsComparator.LeftSideParameter.ActualName = "Generations"; generationsComparator.RightSideParameter.ActualName = MaximumGenerationsParameter.Name; generationsComparator.ResultParameter.ActualName = "TerminateGenerations"; generationsComparator.Successor = terminateBranch; terminateBranch.ConditionParameter.ActualName = "TerminateGenerations"; terminateBranch.FalseBranch = matingPoolCreator; } private GeneticAlgorithmMainLoop CreatePreparedGeneticAlgorithmMainLoop() { var mainLoop = new GeneticAlgorithmMainLoop(); var selector = mainLoop.OperatorGraph.Iterate().OfType().First(o => o.OperatorParameter.ActualName == "Selector"); var crossover = mainLoop.OperatorGraph.Iterate().OfType().First(o => o.OperatorParameter.ActualName == "Crossover"); var subScopesCounter = mainLoop.OperatorGraph.Iterate().OfType().First(); var elitesMerger = mainLoop.OperatorGraph.Iterate().OfType().First(); // Operator starts with selector mainLoop.OperatorGraph.InitialOperator = selector; // Insert AgeCalculator between crossover and its successor var crossoverSuccessor = crossover.Successor; var ageCalculator = new DataReducer() { Name = "Calculate Age" }; ageCalculator.ParameterToReduce.ActualName = "Age"; ageCalculator.TargetParameter.ActualName = "Age"; ageCalculator.ReductionOperation.Value = null; ageCalculator.ReductionOperation.ActualName = "AgeInheritance"; ageCalculator.TargetOperation.Value = new ReductionOperation(ReductionOperations.Assign); crossover.Successor = ageCalculator; ageCalculator.Successor = crossoverSuccessor; // When counting the evaluated solutions, write in LayerEvaluatedSolutions subScopesCounter.ValueParameter.ActualName = "LayerEvaluatedSolutions"; subScopesCounter.AccumulateParameter.Value = new BoolValue(false); // Instead of generational loop after merging of elites, increment ages of all individuals var processor = new UniformSubScopesProcessor(); var incrementor = new IntCounter() { Name = "Increment Age" }; processor.Operator = incrementor; processor.Successor = null; incrementor.ValueParameter.ActualName = "Age"; incrementor.Increment = new IntValue(1); incrementor.Successor = null; elitesMerger.Successor = processor; // Parameterize foreach (var stochasticOperator in mainLoop.OperatorGraph.Iterate().OfType()) stochasticOperator.RandomParameter.ActualName = "LocalRandom"; foreach (var stochasticBranch in mainLoop.OperatorGraph.Iterate().OfType()) stochasticBranch.RandomParameter.ActualName = "LocalRandom"; return mainLoop; } } }