#region License Information /* HeuristicLab * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Optimization.Operators; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.PluginInfrastructure; using HeuristicLab.Random; using HeuristicLab.Selection; namespace HeuristicLab.Algorithms.ALPS { [Item("ALPS Genetic Algorithm", "A genetic algorithm with an age-layered population structure.")] [Creatable("Algorithms")] [StorableClass] public sealed class AlpsGeneticAlgorithm : HeuristicOptimizationEngineAlgorithm, IStorableContent { public string Filename { get; set; } #region Problem Properties public override Type ProblemType { get { return typeof(ISingleObjectiveHeuristicOptimizationProblem); } } public new ISingleObjectiveHeuristicOptimizationProblem Problem { get { return (ISingleObjectiveHeuristicOptimizationProblem)base.Problem; } set { base.Problem = value; } } #endregion #region Parameter Properties private IValueParameter SeedParameter { get { return (IValueParameter)Parameters["Seed"]; } } private IValueParameter SetSeedRandomlyParameter { get { return (IValueParameter)Parameters["SetSeedRandomly"]; } } private IValueParameter AnalyzerParameter { get { return (IValueParameter)Parameters["Analyzer"]; } } private IValueParameter LayerAnalyzerParameter { get { return (IValueParameter)Parameters["LayerAnalyzer"]; } } private IValueParameter NumberOfLayersParameter { get { return (IValueParameter)Parameters["NumberOfLayers"]; } } private IValueParameter PopulationSizeParameter { get { return (IValueParameter)Parameters["PopulationSize"]; } } private IValueParameter MaximumGenerationsParameter { get { return (IValueParameter)Parameters["MaximumGenerations"]; } } private IValueParameter AgingSchemeParameter { get { return (IValueParameter)Parameters["AgingScheme"]; } } private IValueParameter AgeGapParameter { get { return (IValueParameter)Parameters["AgeGap"]; } } private IValueParameter AgeLimitsParameter { get { return (IValueParameter)Parameters["AgeLimits"]; } } private IValueParameter AgeInheritanceParameter { get { return (IValueParameter)Parameters["AgeInheritance"]; } } public IConstrainedValueParameter SelectorParameter { get { return (IConstrainedValueParameter)Parameters["Selector"]; } } public IConstrainedValueParameter CrossoverParameter { get { return (IConstrainedValueParameter)Parameters["Crossover"]; } } private IValueParameter MutationProbabilityParameter { get { return (IValueParameter)Parameters["MutationProbability"]; } } public IConstrainedValueParameter MutatorParameter { get { return (IConstrainedValueParameter)Parameters["Mutator"]; } } private IValueParameter ElitesParameter { get { return (IValueParameter)Parameters["Elites"]; } } private IFixedValueParameter ReevaluateElitesParameter { get { return (IFixedValueParameter)Parameters["ReevaluateElites"]; } } #endregion #region Properties public IntValue Seed { get { return SeedParameter.Value; } set { SeedParameter.Value = value; } } public BoolValue SetSeedRandomly { get { return SetSeedRandomlyParameter.Value; } set { SetSeedRandomlyParameter.Value = value; } } public MultiAnalyzer Analyzer { get { return AnalyzerParameter.Value; } set { AnalyzerParameter.Value = value; } } public MultiAnalyzer LayerAnalyzer { get { return LayerAnalyzerParameter.Value; } set { LayerAnalyzerParameter.Value = value; } } public IntValue NumberOfLayers { get { return NumberOfLayersParameter.Value; } set { NumberOfLayersParameter.Value = value; } } public IntValue PopulationSize { get { return PopulationSizeParameter.Value; } set { PopulationSizeParameter.Value = value; } } public IntValue MaximumGenerations { get { return MaximumGenerationsParameter.Value; } set { MaximumGenerationsParameter.Value = value; } } public AgingScheme AgingScheme { get { return AgingSchemeParameter.Value; } set { AgingSchemeParameter.Value = value; } } public IntValue AgeGap { get { return AgeGapParameter.Value; } set { AgeGapParameter.Value = value; } } public IntArray AgeLimits { get { return AgeLimitsParameter.Value; } set { AgeLimitsParameter.Value = value; } } public ReductionOperation AgeInheritance { get { return AgeInheritanceParameter.Value; } set { AgeInheritanceParameter.Value = value; } } public ISelector Selector { get { return SelectorParameter.Value; } set { SelectorParameter.Value = value; } } public ICrossover Crossover { get { return CrossoverParameter.Value; } set { CrossoverParameter.Value = value; } } public PercentValue MutationProbability { get { return MutationProbabilityParameter.Value; } set { MutationProbabilityParameter.Value = value; } } public IManipulator Mutator { get { return MutatorParameter.Value; } set { MutatorParameter.Value = value; } } public IntValue Elites { get { return ElitesParameter.Value; } set { ElitesParameter.Value = value; } } public bool ReevaluteElites { get { return ReevaluateElitesParameter.Value.Value; } set { ReevaluateElitesParameter.Value.Value = value; } } private RandomCreator GlobalRandomCreator { get { return (RandomCreator)OperatorGraph.InitialOperator; } } private SolutionsCreator SolutionsCreator { get { return OperatorGraph.Iterate().OfType().First(); } } private AlpsGeneticAlgorithmMainLoop MainLoop { get { return OperatorGraph.Iterate().OfType().First(); } } #endregion #region Preconfigured Analyzers [Storable] private BestAverageWorstQualityAnalyzer qualityAnalyzer; [Storable] private BestAverageWorstQualityAnalyzer layerQualityAnalyzer; #endregion [StorableConstructor] private AlpsGeneticAlgorithm(bool deserializing) : base(deserializing) { } private AlpsGeneticAlgorithm(AlpsGeneticAlgorithm original, Cloner cloner) : base(original, cloner) { qualityAnalyzer = cloner.Clone(original.qualityAnalyzer); layerQualityAnalyzer = cloner.Clone(original.layerQualityAnalyzer); Initialize(); } public override IDeepCloneable Clone(Cloner cloner) { return new AlpsGeneticAlgorithm(this, cloner); } public AlpsGeneticAlgorithm() : base() { Parameters.Add(new ValueParameter("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0))); Parameters.Add(new ValueParameter("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true))); Parameters.Add(new ValueParameter("Analyzer", "The operator used to analyze the islands.", new MultiAnalyzer())); Parameters.Add(new ValueParameter("LayerAnalyzer", "The operator used to analyze each layer.", new MultiAnalyzer())); Parameters.Add(new ValueParameter("NumberOfLayers", "The number of layers.", new IntValue(5))); Parameters.Add(new ValueParameter("PopulationSize", "The size of the population of solutions each layer.", new IntValue(20))); Parameters.Add(new ValueParameter("MaximumGenerations", "The maximum number of generations that should be processed.", new IntValue(1000))); Parameters.Add(new ValueParameter("AgingScheme", "The aging scheme for setting the age-limits for the layers.", new AgingScheme(AgingSchemes.Polynomial))); Parameters.Add(new ValueParameter("AgeGap", "The frequency of reseeding the lowest layer and scaling factor for the age-limits for the layers", new IntValue(5))); Parameters.Add(new ValueParameter("AgeLimits", new IntArray(new[] { 5, 20, 45, 80, 125 })) { Hidden = true }); Parameters.Add(new ValueParameter("AgeInheritance", "The operator for determining the age of an offspring based the parents' age.", new ReductionOperation(ReductionOperations.Max)) { Hidden = true }); Parameters.Add(new ConstrainedValueParameter("Selector", "The operator used to select solutions for reproduction.")); Parameters.Add(new ConstrainedValueParameter("Crossover", "The operator used to cross solutions.")); Parameters.Add(new ValueParameter("MutationProbability", "The probability that the mutation operator is applied on a solution.", new PercentValue(0.05))); Parameters.Add(new OptionalConstrainedValueParameter("Mutator", "The operator used to mutate solutions.")); Parameters.Add(new ValueParameter("Elites", "The numer of elite solutions which are kept in each generation.", new IntValue(1))); Parameters.Add(new FixedValueParameter("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", new BoolValue(false)) { Hidden = true }); var globalRandomCreator = new RandomCreator(); var layer0Creator = new SubScopesCreator() { Name = "Create Layer Zero" }; var layer0Processor = new SubScopesProcessor(); var localRandomCreator = new LocalRandomCreator(); var layerVariableCreator = new VariableCreator(); var layerSolutionsCreator = new SolutionsCreator(); var initializeAgeProcessor = new UniformSubScopesProcessor(); var initializeAge = new VariableCreator() { Name = "Initialize Age" }; var initializeLayerPopulationSize = new SubScopesCounter() { Name = "Init LayerPopulationCounter" }; var initializeLocalEvaluatedSolutions = new Assigner() { Name = "Initialize LayerEvaluatedSolutions" }; var initializeGlobalEvaluatedSolutions = new DataReducer() { Name = "Initialize EvaluatedSolutions" }; var resultsCollector = new ResultsCollector(); var mainLoop = new AlpsGeneticAlgorithmMainLoop(); OperatorGraph.InitialOperator = globalRandomCreator; globalRandomCreator.RandomParameter.ActualName = "GlobalRandom"; globalRandomCreator.SeedParameter.Value = null; globalRandomCreator.SetSeedRandomlyParameter.Value = null; globalRandomCreator.Successor = layer0Creator; layer0Creator.NumberOfSubScopesParameter.Value = new IntValue(1); layer0Creator.Successor = layer0Processor; layer0Processor.Operators.Add(localRandomCreator); layer0Processor.Successor = initializeGlobalEvaluatedSolutions; localRandomCreator.Successor = layerVariableCreator; layerVariableCreator.CollectedValues.Add(new ValueParameter("Layer", new IntValue(0))); //layerVariableCreator.CollectedValues.Add(new ValueParameter("Results", new ResultCollection())); layerVariableCreator.Successor = layerSolutionsCreator; layerSolutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name; layerSolutionsCreator.Successor = initializeAgeProcessor; initializeAgeProcessor.Operator = initializeAge; initializeAgeProcessor.Successor = initializeLayerPopulationSize; initializeLayerPopulationSize.ValueParameter.ActualName = "LayerPopulationSize"; initializeLayerPopulationSize.Successor = initializeLocalEvaluatedSolutions; initializeAge.CollectedValues.Add(new ValueParameter("Age", new IntValue(0))); initializeAge.Successor = null; initializeLocalEvaluatedSolutions.LeftSideParameter.ActualName = "LayerEvaluatedSolutions"; initializeLocalEvaluatedSolutions.RightSideParameter.ActualName = "LayerPopulationSize"; initializeLocalEvaluatedSolutions.Successor = null; initializeGlobalEvaluatedSolutions.ReductionOperation.Value.Value = ReductionOperations.Sum; initializeGlobalEvaluatedSolutions.TargetOperation.Value.Value = ReductionOperations.Assign; initializeGlobalEvaluatedSolutions.ParameterToReduce.ActualName = "LayerEvaluatedSolutions"; initializeGlobalEvaluatedSolutions.TargetParameter.ActualName = "EvaluatedSolutions"; initializeGlobalEvaluatedSolutions.Successor = resultsCollector; resultsCollector.CollectedValues.Add(new LookupParameter("Evaluated Solutions", null, "EvaluatedSolutions")); resultsCollector.Successor = mainLoop; foreach (var selector in ApplicationManager.Manager.GetInstances().Where(s => !(s is IMultiObjectiveSelector)).OrderBy(s => Name)) SelectorParameter.ValidValues.Add(selector); var porportionalSelector = SelectorParameter.ValidValues.FirstOrDefault(s => s is ProportionalSelector); if (porportionalSelector != null) SelectorParameter.Value = porportionalSelector; ParameterizeSelectors(); qualityAnalyzer = new BestAverageWorstQualityAnalyzer(); layerQualityAnalyzer = new BestAverageWorstQualityAnalyzer(); ParameterizeAnalyzers(); UpdateAnalyzers(); Initialize(); } public override void Prepare() { if (Problem != null) base.Prepare(); } #region Events protected override void OnProblemChanged() { ParameterizeStochasticOperator(Problem.SolutionCreator); ParameterizeStochasticOperatorForLayer(Problem.Evaluator); foreach (var @operator in Problem.Operators.OfType()) ParameterizeStochasticOperator(@operator); ParameterizeSolutionsCreator(); ParameterizeMainLoop(); ParameterizeSelectors(); ParameterizeAnalyzers(); ParameterizeIterationBasedOperators(); UpdateCrossovers(); UpdateMutators(); UpdateAnalyzers(); Problem.Evaluator.QualityParameter.ActualNameChanged += Evaluator_QualityParameter_ActualNameChanged; base.OnProblemChanged(); } protected override void Problem_SolutionCreatorChanged(object sender, EventArgs e) { ParameterizeStochasticOperator(Problem.SolutionCreator); ParameterizeSolutionsCreator(); base.Problem_SolutionCreatorChanged(sender, e); } protected override void Problem_EvaluatorChanged(object sender, EventArgs e) { ParameterizeStochasticOperatorForLayer(Problem.Evaluator); ParameterizeSolutionsCreator(); ParameterizeMainLoop(); ParameterizeSelectors(); ParameterizeAnalyzers(); Problem.Evaluator.QualityParameter.ActualNameChanged += Evaluator_QualityParameter_ActualNameChanged; base.Problem_EvaluatorChanged(sender, e); } protected override void Problem_OperatorsChanged(object sender, EventArgs e) { foreach (var @operator in Problem.Operators.OfType()) ParameterizeStochasticOperator(@operator); ParameterizeIterationBasedOperators(); UpdateCrossovers(); UpdateMutators(); UpdateAnalyzers(); base.Problem_OperatorsChanged(sender, e); } private void Evaluator_QualityParameter_ActualNameChanged(object sender, EventArgs e) { ParameterizeMainLoop(); ParameterizeSelectors(); ParameterizeAnalyzers(); } void PopulationSizeParameter_ValueChanged(object sender, EventArgs e) { PopulationSizeParameter.ValueChanged += PopulationSize_ValueChanged; ParameterizeSelectors(); } void PopulationSize_ValueChanged(object sender, EventArgs e) { ParameterizeSelectors(); } void ElitesParameter_ValueChanged(object sender, EventArgs e) { Elites.ValueChanged += ElitesParameter_ValueChanged; ParameterizeSelectors(); } void Elites_ValueChanged(object sender, EventArgs e) { ParameterizeSelectors(); } private void AgeGapParameter_ValueChanged(object sender, EventArgs e) { AgeGap.ValueChanged += AgeGap_ValueChanged; RecalculateAgeLimits(); } private void AgeGap_ValueChanged(object sender, EventArgs e) { RecalculateAgeLimits(); } private void AgingSchemeParameter_ValueChanged(object sender, EventArgs e) { AgingScheme.ValueChanged += AgingScheme_ValueChanged; RecalculateAgeLimits(); } private void AgingScheme_ValueChanged(object sender, EventArgs e) { RecalculateAgeLimits(); } private void NumberOfLayersParameter_ValueChanged(object sender, EventArgs e) { NumberOfLayers.ValueChanged += NumberOfLayers_ValueChanged; RecalculateAgeLimits(); } private void NumberOfLayers_ValueChanged(object sender, EventArgs e) { RecalculateAgeLimits(); } #endregion #region Parameterization private void Initialize() { PopulationSizeParameter.ValueChanged += PopulationSizeParameter_ValueChanged; PopulationSize.ValueChanged += PopulationSize_ValueChanged; ElitesParameter.ValueChanged += ElitesParameter_ValueChanged; Elites.ValueChanged += Elites_ValueChanged; if (Problem != null) Problem.Evaluator.QualityParameter.ActualNameChanged += Evaluator_QualityParameter_ActualNameChanged; AgeGapParameter.ValueChanged += AgeGapParameter_ValueChanged; AgeGap.ValueChanged += AgeGap_ValueChanged; AgingSchemeParameter.ValueChanged += AgingSchemeParameter_ValueChanged; AgingScheme.ValueChanged += AgingScheme_ValueChanged; NumberOfLayersParameter.ValueChanged += NumberOfLayersParameter_ValueChanged; NumberOfLayers.ValueChanged += NumberOfLayers_ValueChanged; } private void ParameterizeSolutionsCreator() { SolutionsCreator.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name; SolutionsCreator.SolutionCreatorParameter.ActualName = Problem.SolutionCreatorParameter.Name; MainLoop.LayerUpdator.SolutionsCreator.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name; MainLoop.LayerUpdator.SolutionsCreator.SolutionCreatorParameter.ActualName = Problem.SolutionCreatorParameter.Name; } private void ParameterizeMainLoop() { MainLoop.MainOperator.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name; MainLoop.MainOperator.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name; MainLoop.MainOperator.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName; MainLoop.EldersEmigrator.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name; MainLoop.EldersEmigrator.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName; MainLoop.LayerUpdator.SolutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name; } private void ParameterizeSelectors() { foreach (var selector in SelectorParameter.ValidValues) { selector.CopySelected = new BoolValue(true); selector.NumberOfSelectedSubScopesParameter.Value = new IntValue(2 * (PopulationSize.Value - Elites.Value)); selector.NumberOfSelectedSubScopesParameter.Hidden = true; ParameterizeStochasticOperatorForLayer(selector); } if (Problem != null) { foreach (var selector in SelectorParameter.ValidValues.OfType()) { selector.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name; selector.MaximizationParameter.Hidden = true; selector.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName; selector.QualityParameter.Hidden = true; } } } private void ParameterizeAnalyzers() { qualityAnalyzer.ResultsParameter.ActualName = "Results"; qualityAnalyzer.ResultsParameter.Hidden = true; qualityAnalyzer.QualityParameter.Depth = 2; layerQualityAnalyzer.ResultsParameter.ActualName = "Results"; layerQualityAnalyzer.ResultsParameter.Hidden = true; layerQualityAnalyzer.QualityParameter.Depth = 1; if (Problem != null) { qualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name; qualityAnalyzer.MaximizationParameter.Hidden = true; qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName; qualityAnalyzer.QualityParameter.Hidden = true; qualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name; qualityAnalyzer.BestKnownQualityParameter.Hidden = true; layerQualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name; layerQualityAnalyzer.MaximizationParameter.Hidden = true; layerQualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName; layerQualityAnalyzer.QualityParameter.Hidden = true; layerQualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name; layerQualityAnalyzer.BestKnownQualityParameter.Hidden = true; } } private void ParameterizeIterationBasedOperators() { if (Problem != null) { foreach (var @operator in Problem.Operators.OfType()) { @operator.IterationsParameter.ActualName = "Generations"; @operator.IterationsParameter.Hidden = true; @operator.MaximumIterationsParameter.ActualName = "MaximumGenerations"; @operator.MaximumIterationsParameter.Hidden = true; } } } private void ParameterizeStochasticOperator(IOperator @operator) { var stochasticOperator = @operator as IStochasticOperator; if (stochasticOperator != null) { stochasticOperator.RandomParameter.ActualName = GlobalRandomCreator.RandomParameter.ActualName; stochasticOperator.RandomParameter.Hidden = true; } } private void ParameterizeStochasticOperatorForLayer(IOperator @operator) { var stochasticOperator = @operator as IStochasticOperator; if (stochasticOperator != null) { stochasticOperator.RandomParameter.ActualName = "LocalRandom"; stochasticOperator.RandomParameter.Hidden = true; } } #endregion #region Updates private void UpdateCrossovers() { var oldCrossover = CrossoverParameter.Value; var defaultCrossover = Problem.Operators.OfType().FirstOrDefault(); CrossoverParameter.ValidValues.Clear(); foreach (var crossover in Problem.Operators.OfType().OrderBy(c => c.Name)) { ParameterizeStochasticOperatorForLayer(crossover); CrossoverParameter.ValidValues.Add(crossover); } if (oldCrossover != null) { var crossover = CrossoverParameter.ValidValues.FirstOrDefault(c => c.GetType() == oldCrossover.GetType()); if (crossover != null) CrossoverParameter.Value = crossover; else oldCrossover = null; } if (oldCrossover == null && defaultCrossover != null) CrossoverParameter.Value = defaultCrossover; } private void UpdateMutators() { var oldMutator = MutatorParameter.Value; MutatorParameter.ValidValues.Clear(); foreach (var mutator in Problem.Operators.OfType().OrderBy(m => m.Name)) { ParameterizeStochasticOperatorForLayer(mutator); MutatorParameter.ValidValues.Add(mutator); } if (oldMutator != null) { var mutator = MutatorParameter.ValidValues.FirstOrDefault(m => m.GetType() == oldMutator.GetType()); if (mutator != null) MutatorParameter.Value = mutator; } } private void UpdateAnalyzers() { Analyzer.Operators.Clear(); LayerAnalyzer.Operators.Clear(); Analyzer.Operators.Add(qualityAnalyzer, qualityAnalyzer.EnabledByDefault); LayerAnalyzer.Operators.Add(layerQualityAnalyzer, layerQualityAnalyzer.EnabledByDefault); if (Problem != null) { foreach (var analyzer in Problem.Operators.OfType()) { foreach (var parameter in analyzer.Parameters.OfType()) parameter.Depth = 2; Analyzer.Operators.Add(analyzer, analyzer.EnabledByDefault); } } } #endregion #region AgeLimits calculation private void RecalculateAgeLimits() { IEnumerable scheme; switch (AgingScheme.Value) { case AgingSchemes.Linear: scheme = LinearAgingScheme(); break; case AgingSchemes.Fibonacci: scheme = FibonacciAgingScheme(); break; case AgingSchemes.Polynomial: scheme = PolynomialAgingScheme(2); break; case AgingSchemes.Exponential: scheme = ExponentialAgingScheme(2); break; default: throw new NotSupportedException("Aging Scheme " + AgingScheme.Value + " is not supported."); } int ageGap = AgeGap.Value; AgeLimits = new IntArray(scheme.Select(a => a * ageGap).Take(NumberOfLayers.Value).ToArray()); } // 1 2 3 4 5 6 7 private static IEnumerable LinearAgingScheme() { for (int i = 0; ; i++) yield return i + 1; } // 1 2 3 5 8 13 21 private static IEnumerable FibonacciAgingScheme() { for (int i = 1, next = 2, temp; ; temp = next, next = i + next, i = temp) yield return i; } // (n^2): 1 2 4 9 16 25 36 private static IEnumerable PolynomialAgingScheme(double exp) { yield return 1; yield return 2; for (int i = 2; ; i++) yield return (int)Math.Pow(i, exp); } // 1 2 4 8 16 32 64 private static IEnumerable ExponentialAgingScheme(double @base) { for (int i = 0; ; i++) yield return (int)Math.Pow(@base, i); } #endregion } }