#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Random; namespace HeuristicLab.Algorithms.ALPS.SteadyState { [Item("AlpsSsMover", "")] [StorableClass] public sealed class AlpsSsMover : SingleSuccessorOperator, IStochasticOperator { #region Parameter Properties private ILookupParameter LayerParameter { get { return (ILookupParameter)Parameters["Layer"]; } } private ILookupParameter TargetIndexParameter { get { return (ILookupParameter)Parameters["TargetIndex"]; } } private ILookupParameter LayerSizeParameter { get { return (ILookupParameter)Parameters["LayerSize"]; } } private ILookupParameter NumberOfLayersParameter { get { return (ILookupParameter)Parameters["NumberOfLayers"]; } } private ILookupParameter WorkingScopeParameter { get { return (ILookupParameter)Parameters["WorkingScope"]; } } private ILookupParameter LayersScopeParameter { get { return (ILookupParameter)Parameters["LayersScope"]; } } public ILookupParameter RandomParameter { get { return (ILookupParameter)Parameters["Random"]; } } public IScopeTreeLookupParameter QualityParameter { get { return (IScopeTreeLookupParameter)Parameters["Quality"]; } } public ValueLookupParameter MaximizationParameter { get { return (ValueLookupParameter)Parameters["Maximization"]; } } public IScopeTreeLookupParameter EvalsCreatedParameter { get { return (IScopeTreeLookupParameter)Parameters["EvalsCreated"]; } } public IScopeTreeLookupParameter EvalsMovedQualityParameter { get { return (IScopeTreeLookupParameter)Parameters["EvalsMoved"]; } } private ILookupParameter EvaluatedSolutionsParameter { get { return (ILookupParameter)Parameters["EvaluatedSolutions"]; } } private ILookupParameter AgeLimitsParameter { get { return (ILookupParameter)Parameters["AgeLimits"]; } } private ILookupParameter ElitesParameter { get { return (ILookupParameter)Parameters["Elites"]; } } #endregion [StorableConstructor] private AlpsSsMover(bool deserializing) : base(deserializing) { } private AlpsSsMover(AlpsSsMover original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new AlpsSsMover(this, cloner); } public AlpsSsMover() : base() { Parameters.Add(new LookupParameter("Layer")); Parameters.Add(new LookupParameter("TargetIndex")); Parameters.Add(new LookupParameter("LayerSize")); Parameters.Add(new LookupParameter("NumberOfLayers")); Parameters.Add(new LookupParameter("WorkingScope")); Parameters.Add(new LookupParameter("LayersScope")); Parameters.Add(new LookupParameter("Random", "The random number generator to use.")); Parameters.Add(new ScopeTreeLookupParameter("Quality")); Parameters.Add(new ValueLookupParameter("Maximization", "True if the problem is a maximization problem, otherwise false.")); Parameters.Add(new ScopeTreeLookupParameter("EvalsCreated")); Parameters.Add(new ScopeTreeLookupParameter("EvalsMoved")); Parameters.Add(new LookupParameter("EvaluatedSolutions")); Parameters.Add(new LookupParameter("AgeLimits")); Parameters.Add(new LookupParameter("Elites")); } private int n; private int m; private int evals; private int popSize; private IScope layers; private IRandom rand; private string qualityVariableName; private IntArray ageLimits; private bool maximization; private int elites; public override IOperation Apply() { int i = LayerParameter.ActualValue.Value; int j = TargetIndexParameter.ActualValue.Value; n = NumberOfLayersParameter.ActualValue.Value; m = LayerSizeParameter.ActualValue.Value; evals = EvaluatedSolutionsParameter.ActualValue.Value; popSize = n * m; rand = RandomParameter.ActualValue; qualityVariableName = QualityParameter.TranslatedName; ageLimits = AgeLimitsParameter.ActualValue; maximization = MaximizationParameter.ActualValue.Value; elites = ElitesParameter.ActualValue.Value; layers = LayersScopeParameter.ActualValue; var newIndividual = (IScope)WorkingScopeParameter.ActualValue.Clone(); newIndividual.Name = j.ToString(); TryMoveUp(i, j); var currentLayer = layers.SubScopes[i]; currentLayer.SubScopes[j] = newIndividual; return base.Apply(); } private void TryMoveUp(int i, int j) { var currentLayer = layers.SubScopes[i]; var currentIndividual = currentLayer.SubScopes[j]; ((IntValue)currentIndividual.Variables["LastMove"].Value).Value = evals; if (i < n - 1) { var nextLayer = layers.SubScopes[i + 1]; int? k = FindReplaceable(nextLayer, currentIndividual); if (k.HasValue) { TryMoveUp(i + 1, k.Value); nextLayer.SubScopes[k.Value] = currentIndividual; } } } private int? FindReplaceable(IScope layer, IScope replacingCandidate) { int layerNumber = ((IntValue)layer.Variables["Layer"].Value).Value; var individuals = ( from individual in layer.SubScopes let quality = ((DoubleValue)individual.Variables[qualityVariableName].Value).Value let evalsCreated = ((IntValue)individual.Variables["EvalsCreated"].Value).Value let lastMove = ((IntValue)individual.Variables["LastMove"].Value).Value let age = (evals - evalsCreated) / popSize select new { individual, quality, age, lastMove } ).Select((x, index) => new { index, x.individual, x.quality, x.age, x.lastMove }) .ToList(); var ageLimit = layerNumber < n - 1 ? ageLimits[layerNumber] : int.MaxValue; // Individuals which are too old are first priority to be replaced var toOldIndividual = individuals.FirstOrDefault(x => x.age >= ageLimit); if (toOldIndividual != null) return toOldIndividual.index; double replacingCandidateQuality = ((DoubleValue)replacingCandidate.Variables[qualityVariableName].Value).Value; var worseIndividuals = individuals.Where(individual => maximization ? individual.quality < replacingCandidateQuality : individual.quality > replacingCandidateQuality) .ToList(); // Then take the worst individual where the last move happed m * n evaluations ago int lastMoveLimit = evals - m * n; var worstIndividual = worseIndividuals.LastOrDefault(individual => individual.lastMove < lastMoveLimit); if (worstIndividual != null) return worstIndividual.index; // If no individual moved n * m evaluations ago, take the worst worstIndividual = worseIndividuals.LastOrDefault(); if (worstIndividual != null) return worstIndividual.index; // No individual found for replacement return null; } } }