#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Optimization.Operators; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Selection; namespace HeuristicLab.Algorithms.ALPS.OffspringSelection { [Item("AlpsOffspringSelectionGeneticAlgorithmMainLoop", "An ALPS OS GA Main Loop Operator.")] [StorableClass] public sealed class AlpsOffspringSelectionGeneticAlgorithmMainLoop : AlgorithmOperator { #region Parameter Properties public ValueLookupParameter MaximizationParameter { get { return (ValueLookupParameter)Parameters["Maximization"]; } } public ScopeTreeLookupParameter QualityParameter { get { return (ScopeTreeLookupParameter)Parameters["Quality"]; } } public ILookupParameter MaximumGenerationsParameter { get { return (ILookupParameter)Parameters["MaximumGenerations"]; } } public ILookupParameter AnalyzerParameter { get { return (ILookupParameter)Parameters["Analyzer"]; } } public ILookupParameter LayerAnalyzerParameter { get { return (ILookupParameter)Parameters["LayerAnalyzer"]; } } public LookupParameter ComparisonFactorParameter { get { return (LookupParameter)Parameters["ComparisonFactor"]; } } public ValueLookupParameter ComparisonFactorStartParameter { get { return (ValueLookupParameter)Parameters["ComparisonFactorStart"]; } } public ValueLookupParameter ComparisonFactorModifierParameter { get { return (ValueLookupParameter)Parameters["ComparisonFactorModifier"]; } } #endregion public OffspringSelectionGeneticAlgorithmMainOperator MainOperator { get { return OperatorGraph.Iterate().OfType().First(); } } public EldersEmigrator EldersEmigrator { get { return OperatorGraph.Iterate().OfType().First(); } } public LayerUpdator LayerUpdator { get { return OperatorGraph.Iterate().OfType().First(); } } [StorableConstructor] private AlpsOffspringSelectionGeneticAlgorithmMainLoop(bool deserializing) : base(deserializing) { } private AlpsOffspringSelectionGeneticAlgorithmMainLoop(AlpsOffspringSelectionGeneticAlgorithmMainLoop original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new AlpsOffspringSelectionGeneticAlgorithmMainLoop(this, cloner); } public AlpsOffspringSelectionGeneticAlgorithmMainLoop() : base() { Parameters.Add(new ValueLookupParameter("Maximization", "True if the problem is a maximization problem, otherwise false.")); Parameters.Add(new ScopeTreeLookupParameter("Quality", "The value which represents the quality of a solution.")); Parameters.Add(new LookupParameter("MaximumGenerations", "The maximum number of generations that the algorithm should process.")); Parameters.Add(new LookupParameter("Analyzer", "The operator used to the analyze all individuals.")); Parameters.Add(new LookupParameter("LayerAnalyzer", "The operator used to analyze each layer.")); Parameters.Add(new LookupParameter("ComparisonFactor", "The comparison factor is used to determine whether the offspring should be compared to the better parent, the worse parent or a quality value linearly interpolated between them. It is in the range [0;1].")); Parameters.Add(new ValueLookupParameter("ComparisonFactorStart", "The initial value for the comparison factor.")); Parameters.Add(new ValueLookupParameter("ComparisonFactorModifier", "The operator used to modify the comparison factor.")); var variableCreator = new VariableCreator() { Name = "Initialize" }; var initializeComparisonFactor = new Assigner() { Name = "Initialize ComparisonFactor" }; var initLayerAnalyzerProcessor = new SubScopesProcessor(); var layerVariableCreator = new VariableCreator() { Name = "Initialize Layer" }; var initLayerAnalyzerPlaceholder = new Placeholder() { Name = "LayerAnalyzer (Placeholder)" }; var initAnalyzerPlaceholder = new Placeholder() { Name = "Analyzer (Placeholder)" }; var resultsCollector = new ResultsCollector(); var matingPoolPreProcessor = new UniformSubScopesProcessor() { Name = "MatingPoolPreProcessor" }; var matingPoolPreSorter = new SubScopesSorter() { Name = "MatingPoolPreSorter" }; var matingPoolCreator = new MatingPoolCreator() { Name = "Create Mating Pools" }; var matingPoolProcessor = new LayerUniformSubScopesProcessor(); var initializeLayer = new Assigner() { Name = "Reset LayerEvaluatedSolutions" }; var mainOperator = CreatePreparedOSGAMainOperator(); var generationsIcrementor = new IntCounter() { Name = "Increment Generations" }; var evaluatedSolutionsReducer = new DataReducer() { Name = "Increment EvaluatedSolutions" }; var eldersEmigrator = new EldersEmigrator() { Name = "Emigrate Elders" }; var updateComparisonFactor = new Placeholder() { Name = "Update ComparisonFactor (Placeholder)" }; var layerUpdator = new LayerUpdator(mainOperator) { Name = "Update Layers" }; var layerAnalyzerProcessor = new LayerUniformSubScopesProcessor(); var layerAnalyzerPlaceholder = new Placeholder() { Name = "LayerAnalyzer (Placeholder)" }; var analyzerPlaceholder = new Placeholder() { Name = "Analyzer (Placeholder)" }; var termination = new TerminationOperator(); OperatorGraph.InitialOperator = variableCreator; variableCreator.CollectedValues.Add(new ValueParameter("Generations", new IntValue(0))); variableCreator.CollectedValues.Add(new ValueParameter("GenerationsSinceLastRefresh", new IntValue(0))); variableCreator.CollectedValues.Add(new ValueParameter("OpenLayers", new IntValue(1))); variableCreator.Successor = initializeComparisonFactor; initializeComparisonFactor.LeftSideParameter.ActualName = "ComparisonFactor"; initializeComparisonFactor.RightSideParameter.ActualName = "ComparisonFactorStart"; initializeComparisonFactor.Successor = initLayerAnalyzerProcessor; initLayerAnalyzerProcessor.Operators.Add(layerVariableCreator); initLayerAnalyzerProcessor.Successor = initAnalyzerPlaceholder; layerVariableCreator.CollectedValues.Add(new ValueParameter("LayerEvaluatedSolutions")); layerVariableCreator.CollectedValues.Add(new ValueParameter("LayerResults")); layerVariableCreator.CollectedValues.Add(new ValueParameter("SelectionPressure", new DoubleValue(0))); layerVariableCreator.CollectedValues.Add(new ValueParameter("CurrentSuccessRatio", new DoubleValue(0))); layerVariableCreator.Successor = initLayerAnalyzerPlaceholder; initLayerAnalyzerPlaceholder.OperatorParameter.ActualName = LayerAnalyzerParameter.Name; initLayerAnalyzerPlaceholder.Successor = null; initAnalyzerPlaceholder.OperatorParameter.ActualName = AnalyzerParameter.Name; initAnalyzerPlaceholder.Successor = resultsCollector; resultsCollector.CollectedValues.Add(new LookupParameter("Generations")); resultsCollector.CollectedValues.Add(new ScopeTreeLookupParameter("LayerResults", "Result set for each layer", "LayerResults")); resultsCollector.CollectedValues.Add(new LookupParameter("OpenLayers")); resultsCollector.CollectedValues.Add(new LookupParameter("Current Comparison Factor", null, ComparisonFactorParameter.Name)); resultsCollector.CollectedValues.Add(new LookupParameter("Current Selection Pressure", "Displays the rising selection pressure during a generation.", "SelectionPressure")); resultsCollector.CollectedValues.Add(new LookupParameter("Current Success Ratio", "Indicates how many successful children were already found during a generation (relative to the population size).", "CurrentSuccessRatio")); resultsCollector.CopyValue = new BoolValue(false); resultsCollector.Successor = matingPoolPreProcessor; matingPoolPreProcessor.Operator = matingPoolPreSorter; matingPoolPreProcessor.Successor = matingPoolCreator; matingPoolPreSorter.ValueParameter.ActualName = QualityParameter.Name; matingPoolPreSorter.DescendingParameter.ActualName = MaximizationParameter.Name; matingPoolCreator.Successor = matingPoolProcessor; matingPoolProcessor.Parallel.Value = true; matingPoolProcessor.Operator = initializeLayer; matingPoolProcessor.Successor = generationsIcrementor; initializeLayer.LeftSideParameter.ActualName = "LayerEvaluatedSolutions"; initializeLayer.RightSideParameter.Value = new IntValue(0); initializeLayer.Successor = mainOperator; generationsIcrementor.ValueParameter.ActualName = "Generations"; generationsIcrementor.Increment = new IntValue(1); generationsIcrementor.Successor = evaluatedSolutionsReducer; evaluatedSolutionsReducer.ParameterToReduce.ActualName = "LayerEvaluatedSolutions"; evaluatedSolutionsReducer.TargetParameter.ActualName = "EvaluatedSolutions"; evaluatedSolutionsReducer.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Sum); evaluatedSolutionsReducer.TargetOperation.Value = new ReductionOperation(ReductionOperations.Sum); evaluatedSolutionsReducer.Successor = updateComparisonFactor; updateComparisonFactor.OperatorParameter.ActualName = "ComparisonFactorModifier"; updateComparisonFactor.Successor = eldersEmigrator; eldersEmigrator.Successor = layerUpdator; layerUpdator.Successor = layerAnalyzerProcessor; layerAnalyzerProcessor.Operator = layerAnalyzerPlaceholder; layerAnalyzerProcessor.Successor = analyzerPlaceholder; layerAnalyzerPlaceholder.OperatorParameter.ActualName = LayerAnalyzerParameter.Name; analyzerPlaceholder.OperatorParameter.ActualName = AnalyzerParameter.Name; analyzerPlaceholder.Successor = termination; termination.ContinueBranch = matingPoolPreProcessor; } private OffspringSelectionGeneticAlgorithmMainOperator CreatePreparedOSGAMainOperator() { var mainLoop = new OffspringSelectionGeneticAlgorithmMainOperator(); // Increment ages of all individuals after replacement (merging of elites) var elitesMerger = mainLoop.OperatorGraph.Iterate().OfType().Last(); var incrementAgeProcessor = new UniformSubScopesProcessor(); var ageIncrementor = new IntCounter() { Name = "Increment Age" }; elitesMerger.Successor = incrementAgeProcessor; incrementAgeProcessor.Operator = ageIncrementor; incrementAgeProcessor.Successor = null; ageIncrementor.ValueParameter.ActualName = "Age"; ageIncrementor.Increment = new IntValue(1); // Insert AgeCalculator between crossover and its successor var crossovers = mainLoop.OperatorGraph.Iterate().OfType().Where(o => o.OperatorParameter.ActualName == "Crossover"); foreach (var crossover in crossovers) { var crossoverSuccessor = crossover.Successor; var ageCalculator = new DataReducer() { Name = "Calculate Age" }; crossover.Successor = ageCalculator; ageCalculator.ParameterToReduce.ActualName = "Age"; ageCalculator.TargetParameter.ActualName = "Age"; ageCalculator.ReductionOperation.Value = null; ageCalculator.ReductionOperation.ActualName = "AgeInheritanceReduction"; ageCalculator.TargetOperation.Value = new ReductionOperation(ReductionOperations.Assign); ageCalculator.Successor = crossoverSuccessor; } // When counting the evaluated solutions, write in LayerEvaluatedSolutions var subScopesCounters = mainLoop.OperatorGraph.Iterate().OfType(); foreach (var subScopesCounter in subScopesCounters) { subScopesCounter.ValueParameter.ActualName = "LayerEvaluatedSolutions"; } // Parameterize foreach (var stochasticOperator in mainLoop.OperatorGraph.Iterate().OfType()) stochasticOperator.RandomParameter.ActualName = "LocalRandom"; foreach (var stochasticBranch in mainLoop.OperatorGraph.Iterate().OfType()) stochasticBranch.RandomParameter.ActualName = "LocalRandom"; return mainLoop; } } }