#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using HeuristicLab.Collections;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HEAL.Attic;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Random;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Classification;
namespace HeuristicLab.Algorithms.DataAnalysis {
[Item("Cross Validation (CV)", "Cross-validation wrapper for data analysis algorithms.")]
[Creatable(CreatableAttribute.Categories.DataAnalysis, Priority = 100)]
[StorableType("1C622121-AE5B-42FD-831C-FCA8F8E0AF8D")]
public sealed class CrossValidation : ParameterizedNamedItem, IAlgorithm, IStorableContent {
[Storable]
private int seed;
private SemaphoreSlim availableWorkers; // limits the number of concurrent algorithm executions
private ManualResetEventSlim allAlgorithmsFinished; // this indicates that all started algorithms have been paused or stopped
public CrossValidation()
: base() {
name = ItemName;
description = ItemDescription;
executionState = ExecutionState.Stopped;
runs = new RunCollection { OptimizerName = name };
runsCounter = 0;
algorithm = null;
clonedAlgorithms = new ItemCollection();
results = new ResultCollection();
folds = new IntValue(2);
numberOfWorkers = new IntValue(1);
samplesStart = new IntValue(0);
samplesEnd = new IntValue(0);
shuffleSamples = new BoolValue(false);
storeAlgorithmInEachRun = false;
RegisterEvents();
if (Algorithm != null) RegisterAlgorithmEvents();
}
public string Filename { get; set; }
#region persistence and cloning
[StorableConstructor]
private CrossValidation(StorableConstructorFlag _) : base(_) {
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
// BackwardsCompatibility3.3
#region Backwards compatible code, remove with 3.4
if (shuffleSamples == null) shuffleSamples = new BoolValue(false);
#endregion
RegisterEvents();
if (Algorithm != null) RegisterAlgorithmEvents();
}
private CrossValidation(CrossValidation original, Cloner cloner)
: base(original, cloner) {
executionState = original.executionState;
storeAlgorithmInEachRun = original.storeAlgorithmInEachRun;
runs = cloner.Clone(original.runs);
runsCounter = original.runsCounter;
algorithm = cloner.Clone(original.algorithm);
clonedAlgorithms = cloner.Clone(original.clonedAlgorithms);
results = cloner.Clone(original.results);
folds = cloner.Clone(original.folds);
numberOfWorkers = cloner.Clone(original.numberOfWorkers);
samplesStart = cloner.Clone(original.samplesStart);
samplesEnd = cloner.Clone(original.samplesEnd);
shuffleSamples = cloner.Clone(original.shuffleSamples);
seed = original.seed;
RegisterEvents();
if (Algorithm != null) RegisterAlgorithmEvents();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new CrossValidation(this, cloner);
}
#endregion
#region properties
[Storable]
private IAlgorithm algorithm;
public IAlgorithm Algorithm {
get { return algorithm; }
set {
if (ExecutionState != ExecutionState.Prepared && ExecutionState != ExecutionState.Stopped)
throw new InvalidOperationException("Changing the algorithm is only allowed if the CrossValidation is stopped or prepared.");
if (algorithm != value) {
if (value != null && value.Problem != null && !(value.Problem is IDataAnalysisProblem))
throw new ArgumentException("Only algorithms with a DataAnalysisProblem could be used for the cross validation.");
if (algorithm != null) DeregisterAlgorithmEvents();
algorithm = value;
Parameters.Clear();
if (algorithm != null) {
algorithm.StoreAlgorithmInEachRun = false;
RegisterAlgorithmEvents();
algorithm.Prepare(true);
Parameters.AddRange(algorithm.Parameters);
}
OnAlgorithmChanged();
Prepare();
}
}
}
[Storable]
private IDataAnalysisProblem problem;
public IDataAnalysisProblem Problem {
get {
if (algorithm == null)
return null;
return (IDataAnalysisProblem)algorithm.Problem;
}
set {
if (ExecutionState != ExecutionState.Prepared && ExecutionState != ExecutionState.Stopped)
throw new InvalidOperationException("Changing the problem is only allowed if the CrossValidation is stopped or prepared.");
if (algorithm == null) throw new ArgumentNullException("Could not set a problem before an algorithm was set.");
algorithm.Problem = value;
problem = value;
}
}
IProblem IAlgorithm.Problem {
get { return Problem; }
set {
if (value != null && !ProblemType.IsInstanceOfType(value))
throw new ArgumentException("Only DataAnalysisProblems could be used for the cross validation.");
Problem = (IDataAnalysisProblem)value;
}
}
public Type ProblemType {
get { return typeof(IDataAnalysisProblem); }
}
[Storable]
private ItemCollection clonedAlgorithms;
public IEnumerable NestedOptimizers {
get {
if (Algorithm == null) yield break;
yield return Algorithm;
}
}
[Storable]
private ResultCollection results;
public ResultCollection Results {
get { return results; }
}
[Storable]
private BoolValue shuffleSamples;
public BoolValue ShuffleSamples {
get { return shuffleSamples; }
}
[Storable]
private IntValue folds;
public IntValue Folds {
get { return folds; }
}
[Storable]
private IntValue samplesStart;
public IntValue SamplesStart {
get { return samplesStart; }
}
[Storable]
private IntValue samplesEnd;
public IntValue SamplesEnd {
get { return samplesEnd; }
}
[Storable]
private IntValue numberOfWorkers;
public IntValue NumberOfWorkers {
get { return numberOfWorkers; }
}
[Storable]
private bool storeAlgorithmInEachRun;
public bool StoreAlgorithmInEachRun {
get { return storeAlgorithmInEachRun; }
set {
if (storeAlgorithmInEachRun != value) {
storeAlgorithmInEachRun = value;
OnStoreAlgorithmInEachRunChanged();
}
}
}
[Storable]
private int runsCounter;
[Storable]
private RunCollection runs;
public RunCollection Runs {
get { return runs; }
}
[Storable]
private ExecutionState executionState;
public ExecutionState ExecutionState {
get { return executionState; }
private set {
if (executionState != value) {
executionState = value;
OnExecutionStateChanged();
OnItemImageChanged();
}
}
}
public static new Image StaticItemImage {
get { return HeuristicLab.Common.Resources.VSImageLibrary.Event; }
}
public override Image ItemImage {
get {
if (ExecutionState == ExecutionState.Prepared) return HeuristicLab.Common.Resources.VSImageLibrary.ExecutablePrepared;
else if (ExecutionState == ExecutionState.Started) return HeuristicLab.Common.Resources.VSImageLibrary.ExecutableStarted;
else if (ExecutionState == ExecutionState.Paused) return HeuristicLab.Common.Resources.VSImageLibrary.ExecutablePaused;
else if (ExecutionState == ExecutionState.Stopped) return HeuristicLab.Common.Resources.VSImageLibrary.ExecutableStopped;
else return base.ItemImage;
}
}
public TimeSpan ExecutionTime {
get {
if (ExecutionState != ExecutionState.Prepared)
return TimeSpan.FromMilliseconds(clonedAlgorithms.Select(x => x.ExecutionTime.TotalMilliseconds).Sum());
return TimeSpan.Zero;
}
}
#endregion
protected override void OnNameChanged() {
base.OnNameChanged();
Runs.OptimizerName = Name;
}
public void Prepare() {
if (startPending) return;
if (ExecutionState == ExecutionState.Started)
throw new InvalidOperationException(string.Format("Prepare not allowed in execution state \"{0}\".", ExecutionState));
results.Clear();
clonedAlgorithms.Clear();
if (Algorithm != null) {
Algorithm.Prepare();
if (Algorithm.ExecutionState == ExecutionState.Prepared) OnPrepared();
}
}
public void Prepare(bool clearRuns) {
if (clearRuns) runs.Clear();
Prepare();
}
private bool startPending;
public void Start() {
Start(CancellationToken.None);
}
public void Start(CancellationToken cancellationToken) {
lock (locker) {
if (startPending) return;
startPending = true;
}
try {
if ((ExecutionState != ExecutionState.Prepared) && (ExecutionState != ExecutionState.Paused))
throw new InvalidOperationException(string.Format("Start not allowed in execution state \"{0}\".", ExecutionState));
seed = RandomSeedGenerator.GetSeed();
if (Algorithm == null) return;
//create cloned algorithms
if (clonedAlgorithms.Count == 0) {
int testSamplesCount = (SamplesEnd.Value - SamplesStart.Value) / Folds.Value;
IDataset shuffledDataset = null;
for (int i = 0; i < Folds.Value; i++) {
var cloner = new Cloner();
if (ShuffleSamples.Value) {
var random = new FastRandom(seed);
var dataAnalysisProblem = (IDataAnalysisProblem)algorithm.Problem;
var dataset = (Dataset)dataAnalysisProblem.ProblemData.Dataset;
shuffledDataset = shuffledDataset ?? dataset.Shuffle(random);
cloner.RegisterClonedObject(dataset, shuffledDataset);
}
IAlgorithm clonedAlgorithm = cloner.Clone(Algorithm);
clonedAlgorithm.Name = algorithm.Name + " Fold " + i;
IDataAnalysisProblem problem = clonedAlgorithm.Problem as IDataAnalysisProblem;
ISymbolicDataAnalysisProblem symbolicProblem = problem as ISymbolicDataAnalysisProblem;
int testStart = (i * testSamplesCount) + SamplesStart.Value;
int testEnd = (i + 1) == Folds.Value ? SamplesEnd.Value : (i + 1) * testSamplesCount + SamplesStart.Value;
problem.ProblemData.TrainingPartition.Start = SamplesStart.Value;
problem.ProblemData.TrainingPartition.End = SamplesEnd.Value;
problem.ProblemData.TestPartition.Start = testStart;
problem.ProblemData.TestPartition.End = testEnd;
DataAnalysisProblemData problemData = problem.ProblemData as DataAnalysisProblemData;
if (problemData != null) {
problemData.TrainingPartitionParameter.Hidden = false;
problemData.TestPartitionParameter.Hidden = false;
}
if (symbolicProblem != null) {
symbolicProblem.FitnessCalculationPartition.Start = SamplesStart.Value;
symbolicProblem.FitnessCalculationPartition.End = SamplesEnd.Value;
}
// We need to set the estimation limits because they are recalculated by the problem
// whenever the data partitions change.
// Instead of explicitly handling all types we could also check the parameters-collection
// for a parameter with name "EstimationLimits".
SetEstimationLimits(problem, new[] { typeof(SymbolicRegressionSingleObjectiveProblem),
typeof(SymbolicRegressionMultiObjectiveProblem),
typeof(SymbolicClassificationSingleObjectiveProblem),
typeof(SymbolicClassificationMultiObjectiveProblem) });
clonedAlgorithm.Prepare();
clonedAlgorithms.Add(clonedAlgorithm);
}
}
OnStarted();
} finally {
if (startPending) startPending = false;
}
availableWorkers = new SemaphoreSlim(NumberOfWorkers.Value, NumberOfWorkers.Value);
allAlgorithmsFinished = new ManualResetEventSlim(false);
var startedTasks = new List(clonedAlgorithms.Count);
//start prepared or paused cloned algorithms
foreach (IAlgorithm clonedAlgorithm in clonedAlgorithms) {
if (pausePending || stopPending || ExecutionState != ExecutionState.Started) break;
if (clonedAlgorithm.ExecutionState == ExecutionState.Prepared ||
clonedAlgorithm.ExecutionState == ExecutionState.Paused) {
availableWorkers.Wait();
lock (locker) {
if (pausePending || stopPending || ExecutionState != ExecutionState.Started) break;
var task = clonedAlgorithm.StartAsync(cancellationToken);
startedTasks.Add(task);
}
}
}
allAlgorithmsFinished.Wait();
Task.WaitAll(startedTasks.ToArray()); // to get exceptions not handled within the tasks
}
public async Task StartAsync() { await StartAsync(CancellationToken.None); }
public async Task StartAsync(CancellationToken cancellationToken) {
await AsyncHelper.DoAsync(Start, cancellationToken);
}
private bool pausePending;
public void Pause() {
if (startPending) return;
if (ExecutionState != ExecutionState.Started)
throw new InvalidOperationException(string.Format("Pause not allowed in execution state \"{0}\".", ExecutionState));
if (!pausePending) {
pausePending = true;
lock (locker) {
var toPause = clonedAlgorithms.Where(x => x.ExecutionState == ExecutionState.Started).ToList();
foreach (var optimizer in toPause) {
// a race-condition may occur when the optimizer has changed the state by itself in the meantime
try { optimizer.Pause(); } catch (InvalidOperationException) { }
}
}
}
}
private bool stopPending;
public void Stop() {
if (startPending) return;
if ((ExecutionState != ExecutionState.Started) && (ExecutionState != ExecutionState.Paused))
throw new InvalidOperationException(string.Format("Stop not allowed in execution state \"{0}\".",
ExecutionState));
if (!stopPending) {
stopPending = true;
lock (locker) {
var toStop = clonedAlgorithms.Where(x => x.ExecutionState == ExecutionState.Started || x.ExecutionState == ExecutionState.Paused).ToList();
foreach (var optimizer in toStop) {
// a race-condition may occur when the optimizer has changed the state by itself in the meantime
try { optimizer.Stop(); } catch (InvalidOperationException) { }
}
}
}
}
#region collect parameters and results
public override void CollectParameterValues(IDictionary values) {
values.Add("Algorithm Name", new StringValue(Name));
values.Add("Algorithm Type", new StringValue(GetType().GetPrettyName()));
values.Add("Folds", new IntValue(Folds.Value));
if (algorithm != null) {
values.Add("CrossValidation Algorithm Name", new StringValue(Algorithm.Name));
values.Add("CrossValidation Algorithm Type", new StringValue(Algorithm.GetType().GetPrettyName()));
base.CollectParameterValues(values);
}
if (Problem != null) {
values.Add("Problem Name", new StringValue(Problem.Name));
values.Add("Problem Type", new StringValue(Problem.GetType().GetPrettyName()));
Problem.CollectParameterValues(values);
}
}
public void CollectResultValues(IDictionary results) {
var clonedResults = (ResultCollection)this.results.Clone();
foreach (var result in clonedResults) {
results.Add(result.Name, result.Value);
}
}
private void AggregateResultValues(IDictionary results) {
IEnumerable runs = clonedAlgorithms.Select(alg => alg.Runs.FirstOrDefault()).Where(run => run != null);
IEnumerable> resultCollections = runs.Where(x => x != null).SelectMany(x => x.Results).ToList();
foreach (IResult result in ExtractAndAggregateResults(resultCollections))
results.Add(result.Name, result.Value);
foreach (IResult result in ExtractAndAggregateResults(resultCollections))
results.Add(result.Name, result.Value);
foreach (IResult result in ExtractAndAggregateResults(resultCollections))
results.Add(result.Name, result.Value);
foreach (IResult result in ExtractAndAggregateRegressionSolutions(resultCollections)) {
results.Add(result.Name, result.Value);
}
foreach (IResult result in ExtractAndAggregateClassificationSolutions(resultCollections)) {
results.Add(result.Name, result.Value);
}
results.Add("Execution Time", new TimeSpanValue(this.ExecutionTime));
results.Add("CrossValidation Folds", new RunCollection(runs));
}
private IEnumerable ExtractAndAggregateRegressionSolutions(IEnumerable> resultCollections) {
Dictionary> resultSolutions = new Dictionary>();
foreach (var result in resultCollections) {
var regressionSolution = result.Value as IRegressionSolution;
if (regressionSolution != null) {
if (resultSolutions.ContainsKey(result.Key)) {
resultSolutions[result.Key].Add(regressionSolution);
} else {
resultSolutions.Add(result.Key, new List() { regressionSolution });
}
}
}
List aggregatedResults = new List();
foreach (KeyValuePair> solutions in resultSolutions) {
// clone manually to correctly clone references between cloned root objects
Cloner cloner = new Cloner();
if (ShuffleSamples.Value) {
var dataset = (Dataset)Problem.ProblemData.Dataset;
var random = new FastRandom(seed);
var shuffledDataset = dataset.Shuffle(random);
cloner.RegisterClonedObject(dataset, shuffledDataset);
}
var problemDataClone = (IRegressionProblemData)cloner.Clone(Problem.ProblemData);
// set partitions of problem data clone correctly
problemDataClone.TrainingPartition.Start = SamplesStart.Value; problemDataClone.TrainingPartition.End = SamplesEnd.Value;
problemDataClone.TestPartition.Start = SamplesStart.Value; problemDataClone.TestPartition.End = SamplesEnd.Value;
// clone models
var ensembleSolution = new RegressionEnsembleSolution(problemDataClone);
ensembleSolution.AddRegressionSolutions(solutions.Value);
aggregatedResults.Add(new Result(solutions.Key + " (ensemble)", ensembleSolution));
}
List flattenedResults = new List();
CollectResultsRecursively("", aggregatedResults, flattenedResults);
return flattenedResults;
}
private IEnumerable ExtractAndAggregateClassificationSolutions(IEnumerable> resultCollections) {
Dictionary> resultSolutions = new Dictionary>();
foreach (var result in resultCollections) {
var classificationSolution = result.Value as IClassificationSolution;
if (classificationSolution != null) {
if (resultSolutions.ContainsKey(result.Key)) {
resultSolutions[result.Key].Add(classificationSolution);
} else {
resultSolutions.Add(result.Key, new List() { classificationSolution });
}
}
}
var aggregatedResults = new List();
foreach (KeyValuePair> solutions in resultSolutions) {
// at least one algorithm (GBT with logistic regression loss) produces a classification solution even though the original problem is a regression problem.
var dataset = (Dataset)Problem.ProblemData.Dataset;
if (ShuffleSamples.Value) {
var random = new FastRandom(seed);
dataset = dataset.Shuffle(random);
}
var problemData = (IClassificationProblemData)Problem.ProblemData;
var problemDataClone = new ClassificationProblemData(dataset, problemData.AllowedInputVariables, problemData.TargetVariable, problemData.ClassNames, problemData.PositiveClass);
// set partitions of problem data clone correctly
problemDataClone.TrainingPartition.Start = SamplesStart.Value; problemDataClone.TrainingPartition.End = SamplesEnd.Value;
problemDataClone.TestPartition.Start = SamplesStart.Value; problemDataClone.TestPartition.End = SamplesEnd.Value;
// clone models
var ensembleSolution = new ClassificationEnsembleSolution(problemDataClone);
ensembleSolution.AddClassificationSolutions(solutions.Value);
aggregatedResults.Add(new Result(solutions.Key + " (ensemble)", ensembleSolution));
}
List flattenedResults = new List();
CollectResultsRecursively("", aggregatedResults, flattenedResults);
return flattenedResults;
}
private void CollectResultsRecursively(string path, IEnumerable results, IList flattenedResults) {
foreach (IResult result in results) {
flattenedResults.Add(new Result(path + result.Name, result.Value));
ResultCollection childCollection = result.Value as ResultCollection;
if (childCollection != null) {
CollectResultsRecursively(path + result.Name + ".", childCollection, flattenedResults);
}
}
}
private static IEnumerable ExtractAndAggregateResults(IEnumerable> results)
where T : class, IItem, new() {
Dictionary> resultValues = new Dictionary>();
foreach (var resultValue in results.Where(r => r.Value.GetType() == typeof(T))) {
if (!resultValues.ContainsKey(resultValue.Key))
resultValues[resultValue.Key] = new List();
resultValues[resultValue.Key].Add(ConvertToDouble(resultValue.Value));
}
DoubleValue doubleValue;
if (typeof(T) == typeof(PercentValue))
doubleValue = new PercentValue();
else if (typeof(T) == typeof(DoubleValue))
doubleValue = new DoubleValue();
else if (typeof(T) == typeof(IntValue))
doubleValue = new DoubleValue();
else
throw new NotSupportedException();
List aggregatedResults = new List();
foreach (KeyValuePair> resultValue in resultValues) {
doubleValue.Value = resultValue.Value.Average();
aggregatedResults.Add(new Result(resultValue.Key + " (average)", (IItem)doubleValue.Clone()));
doubleValue.Value = resultValue.Value.StandardDeviation();
aggregatedResults.Add(new Result(resultValue.Key + " (std.dev.)", (IItem)doubleValue.Clone()));
}
return aggregatedResults;
}
private static double ConvertToDouble(IItem item) {
if (item is DoubleValue) return ((DoubleValue)item).Value;
else if (item is IntValue) return ((IntValue)item).Value;
else throw new NotSupportedException("Could not convert any item type to double");
}
#endregion
#region events
private void RegisterEvents() {
Folds.ValueChanged += new EventHandler(Folds_ValueChanged);
RegisterClonedAlgorithmsEvents();
}
private void Folds_ValueChanged(object sender, EventArgs e) {
if (ExecutionState != ExecutionState.Prepared)
throw new InvalidOperationException("Can not change number of folds if the execution state is not prepared.");
}
#region template algorithms events
public event EventHandler AlgorithmChanged;
private void OnAlgorithmChanged() {
EventHandler handler = AlgorithmChanged;
if (handler != null) handler(this, EventArgs.Empty);
OnProblemChanged();
if (Problem == null) ExecutionState = ExecutionState.Stopped;
}
private void RegisterAlgorithmEvents() {
algorithm.ProblemChanged += new EventHandler(Algorithm_ProblemChanged);
algorithm.ExecutionStateChanged += new EventHandler(Algorithm_ExecutionStateChanged);
if (Problem != null) {
Problem.Reset += new EventHandler(Problem_Reset);
}
}
private void DeregisterAlgorithmEvents() {
algorithm.ProblemChanged -= new EventHandler(Algorithm_ProblemChanged);
algorithm.ExecutionStateChanged -= new EventHandler(Algorithm_ExecutionStateChanged);
if (Problem != null) {
Problem.Reset -= new EventHandler(Problem_Reset);
}
}
private void Algorithm_ProblemChanged(object sender, EventArgs e) {
if (algorithm.Problem != null && !(algorithm.Problem is IDataAnalysisProblem)) {
algorithm.Problem = problem;
throw new ArgumentException("A cross validation algorithm can only contain DataAnalysisProblems.");
}
if (problem != null) problem.Reset -= new EventHandler(Problem_Reset);
problem = (IDataAnalysisProblem)algorithm.Problem;
if (problem != null) problem.Reset += new EventHandler(Problem_Reset);
OnProblemChanged();
}
public event EventHandler ProblemChanged;
private void OnProblemChanged() {
EventHandler handler = ProblemChanged;
if (handler != null) handler(this, EventArgs.Empty);
ConfigureProblem();
}
private void Problem_Reset(object sender, EventArgs e) {
ConfigureProblem();
}
private void ConfigureProblem() {
SamplesStart.Value = 0;
if (Problem != null) {
SamplesEnd.Value = Problem.ProblemData.Dataset.Rows;
DataAnalysisProblemData problemData = Problem.ProblemData as DataAnalysisProblemData;
if (problemData != null) {
problemData.TrainingPartitionParameter.Hidden = true;
problemData.TestPartitionParameter.Hidden = true;
}
ISymbolicDataAnalysisProblem symbolicProblem = Problem as ISymbolicDataAnalysisProblem;
if (symbolicProblem != null) {
symbolicProblem.FitnessCalculationPartitionParameter.Hidden = true;
symbolicProblem.FitnessCalculationPartition.Start = SamplesStart.Value;
symbolicProblem.FitnessCalculationPartition.End = SamplesEnd.Value;
symbolicProblem.ValidationPartitionParameter.Hidden = true;
symbolicProblem.ValidationPartition.Start = 0;
symbolicProblem.ValidationPartition.End = 0;
}
} else
SamplesEnd.Value = 0;
}
private void Algorithm_ExecutionStateChanged(object sender, EventArgs e) {
switch (Algorithm.ExecutionState) {
case ExecutionState.Prepared:
OnPrepared();
break;
case ExecutionState.Started: throw new InvalidOperationException("Algorithm template can not be started.");
case ExecutionState.Paused: throw new InvalidOperationException("Algorithm template can not be paused.");
case ExecutionState.Stopped:
OnStopped();
break;
}
}
#endregion
#region clonedAlgorithms events
private void RegisterClonedAlgorithmsEvents() {
clonedAlgorithms.ItemsAdded += new CollectionItemsChangedEventHandler(ClonedAlgorithms_ItemsAdded);
clonedAlgorithms.ItemsRemoved += new CollectionItemsChangedEventHandler(ClonedAlgorithms_ItemsRemoved);
clonedAlgorithms.CollectionReset += new CollectionItemsChangedEventHandler(ClonedAlgorithms_CollectionReset);
foreach (IAlgorithm algorithm in clonedAlgorithms)
RegisterClonedAlgorithmEvents(algorithm);
}
private void DeregisterClonedAlgorithmsEvents() {
clonedAlgorithms.ItemsAdded -= new CollectionItemsChangedEventHandler(ClonedAlgorithms_ItemsAdded);
clonedAlgorithms.ItemsRemoved -= new CollectionItemsChangedEventHandler(ClonedAlgorithms_ItemsRemoved);
clonedAlgorithms.CollectionReset -= new CollectionItemsChangedEventHandler(ClonedAlgorithms_CollectionReset);
foreach (IAlgorithm algorithm in clonedAlgorithms)
DeregisterClonedAlgorithmEvents(algorithm);
}
private void ClonedAlgorithms_ItemsAdded(object sender, CollectionItemsChangedEventArgs e) {
foreach (IAlgorithm algorithm in e.Items)
RegisterClonedAlgorithmEvents(algorithm);
}
private void ClonedAlgorithms_ItemsRemoved(object sender, CollectionItemsChangedEventArgs e) {
foreach (IAlgorithm algorithm in e.Items)
DeregisterClonedAlgorithmEvents(algorithm);
}
private void ClonedAlgorithms_CollectionReset(object sender, CollectionItemsChangedEventArgs e) {
foreach (IAlgorithm algorithm in e.OldItems)
DeregisterClonedAlgorithmEvents(algorithm);
foreach (IAlgorithm algorithm in e.Items)
RegisterClonedAlgorithmEvents(algorithm);
}
private void RegisterClonedAlgorithmEvents(IAlgorithm algorithm) {
algorithm.ExceptionOccurred += new EventHandler>(ClonedAlgorithm_ExceptionOccurred);
algorithm.ExecutionTimeChanged += new EventHandler(ClonedAlgorithm_ExecutionTimeChanged);
algorithm.Started += new EventHandler(ClonedAlgorithm_Started);
algorithm.Paused += new EventHandler(ClonedAlgorithm_Paused);
algorithm.Stopped += new EventHandler(ClonedAlgorithm_Stopped);
}
private void DeregisterClonedAlgorithmEvents(IAlgorithm algorithm) {
algorithm.ExceptionOccurred -= new EventHandler>(ClonedAlgorithm_ExceptionOccurred);
algorithm.ExecutionTimeChanged -= new EventHandler(ClonedAlgorithm_ExecutionTimeChanged);
algorithm.Started -= new EventHandler(ClonedAlgorithm_Started);
algorithm.Paused -= new EventHandler(ClonedAlgorithm_Paused);
algorithm.Stopped -= new EventHandler(ClonedAlgorithm_Stopped);
}
private void ClonedAlgorithm_ExceptionOccurred(object sender, EventArgs e) {
Pause();
OnExceptionOccurred(e.Value);
}
private void ClonedAlgorithm_ExecutionTimeChanged(object sender, EventArgs e) {
OnExecutionTimeChanged();
}
private readonly object locker = new object();
private readonly object resultLocker = new object();
private void ClonedAlgorithm_Started(object sender, EventArgs e) {
IAlgorithm algorithm = sender as IAlgorithm;
lock (resultLocker) {
if (algorithm != null && !results.ContainsKey(algorithm.Name))
results.Add(new Result(algorithm.Name, "Contains results for the specific fold.", algorithm.Results));
}
}
private void ClonedAlgorithm_Paused(object sender, EventArgs e) {
lock (locker) {
availableWorkers.Release();
if (clonedAlgorithms.All(alg => alg.ExecutionState != ExecutionState.Started)) {
OnPaused();
allAlgorithmsFinished.Set();
}
}
}
private void ClonedAlgorithm_Stopped(object sender, EventArgs e) {
lock (locker) {
// if the algorithm was in paused state, its worker has already been released
if (availableWorkers.CurrentCount < NumberOfWorkers.Value)
availableWorkers.Release();
if (clonedAlgorithms.All(alg => alg.ExecutionState == ExecutionState.Stopped)) {
OnStopped();
allAlgorithmsFinished.Set();
} else if (stopPending && clonedAlgorithms.All(alg => alg.ExecutionState == ExecutionState.Prepared || alg.ExecutionState == ExecutionState.Stopped)) {
OnStopped();
allAlgorithmsFinished.Set();
}
}
}
#endregion
#endregion
#region event firing
public event EventHandler ExecutionStateChanged;
private void OnExecutionStateChanged() {
EventHandler handler = ExecutionStateChanged;
if (handler != null) handler(this, EventArgs.Empty);
}
public event EventHandler ExecutionTimeChanged;
private void OnExecutionTimeChanged() {
EventHandler handler = ExecutionTimeChanged;
if (handler != null) handler(this, EventArgs.Empty);
}
public event EventHandler Prepared;
private void OnPrepared() {
ExecutionState = ExecutionState.Prepared;
EventHandler handler = Prepared;
if (handler != null) handler(this, EventArgs.Empty);
OnExecutionTimeChanged();
}
public event EventHandler Started;
private void OnStarted() {
startPending = false;
ExecutionState = ExecutionState.Started;
EventHandler handler = Started;
if (handler != null) handler(this, EventArgs.Empty);
}
public event EventHandler Paused;
private void OnPaused() {
pausePending = false;
ExecutionState = ExecutionState.Paused;
EventHandler handler = Paused;
if (handler != null) handler(this, EventArgs.Empty);
}
public event EventHandler Stopped;
private void OnStopped() {
stopPending = false;
Dictionary collectedResults = new Dictionary();
AggregateResultValues(collectedResults);
results.AddRange(collectedResults.Select(x => new Result(x.Key, x.Value)).Cast().ToArray());
clonedAlgorithms.Clear();
runsCounter++;
runs.Add(new Run(string.Format("{0} Run {1}", Name, runsCounter), this));
ExecutionState = ExecutionState.Stopped;
EventHandler handler = Stopped;
if (handler != null) handler(this, EventArgs.Empty);
}
public event EventHandler> ExceptionOccurred;
private void OnExceptionOccurred(Exception exception) {
EventHandler> handler = ExceptionOccurred;
if (handler != null) handler(this, new EventArgs(exception));
}
public event EventHandler StoreAlgorithmInEachRunChanged;
private void OnStoreAlgorithmInEachRunChanged() {
EventHandler handler = StoreAlgorithmInEachRunChanged;
if (handler != null) handler(this, EventArgs.Empty);
}
#endregion
#region helper
private void SetEstimationLimits(IDataAnalysisProblem problem, Type[] types) {
foreach (var type in types) {
if (type.IsAssignableFrom(problem.GetType())) {
var originalLimits = (DoubleLimit)Problem.Parameters["EstimationLimits"].ActualValue; // problem is a clone of Problem
var limits = (DoubleLimit)problem.Parameters["EstimationLimits"].ActualValue;
limits.Lower = originalLimits.Lower;
limits.Upper = originalLimits.Upper;
}
}
}
#endregion
}
}